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Between AD 800 and 1450, the most important centers for the study of what 
we now call “the exact sciences” were located in the vast multinational Islamic 
world. The sciences denoted by this name included the mathematical sci-
ences of arithmetic, geometry and trigonometry, and their applications in var-
ious fields such as astronomy, astrology, geography, cartography, and optics, 
to mention only some of the more prominent examples. During the eighth 
and ninth centuries, the bulk of Greek science, medicine and philosophy, and 
much of Indian and pre-Islamic Persian science, were appropriated by Islamic 
civilization through a complex process of translations from Pahlavi, Sanskrit, 
Greek, and Syriac, in the course of which Arabic became the language of a 
rich and active scientific and philosophical tradition for many centuries. In the 
eleventh and twelfth centuries, many Arabic scientific works and Arabic ver-
sions of Greek scientific and philosophical texts were translated into Latin, and 
in turn were appropriated into the Latin medieval culture. These translations 
were crucial for the rise of the “renaissance of the twelfth century” in Europe 
and they later played an important part in the development of the exact sci-
ences during the Renaissance of the sixteenth century. However, only a small 
part of the total Islamic accomplishments in science was transmitted to medi-
eval Europe. The scientific endeavors in the Islamic world of course remain as 
an important subject to be investigated in its own right as a distinctive aspect 
of Islamic culture.

The Islamic tradition in the exact sciences continued well into the nine-
teenth century, and abundant source material is available in the form of unpub-
lished manuscripts in Arabic, Persian, and other languages in libraries all over 
the world. In the last decades, many researchers have worked on the Islamic 
scientific tradition, and our views of this tradition are rapidly changing as a 
result of recent discoveries. This process will, hopefully, continue, because 
important sources have not yet been identified and studied. Hence the time is 
not yet ripe for a reliable survey of the entire field.

The twelve chapters in this book discuss some of the new perspectives 
on the Islamic scientific tradition emerging from recent historical research. The 
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chapters are revised and updated versions of contributions by experts in the his-
tory of Islamic science at a conference on New Perspectives in Islamic Science 
held at the Dibner Institute in November 1998. The emphasis of the conference 
was on the mathematical sciences, and the chapters in this volume represent a 
cross-section of the field. Not all important topics could be included, and the 
reader will notice the absence of contributions on, for example, Islamic astro-
nomical instruments. Nevertheless, we believe that the present volume will 
transmit to the reader a view of an exciting and rapidly developing field of his-
torical research. 

The editors have divided the twelve chapters into six groups of two, under 
the headings: Cross-cultural Transmission; Transformations of Greek Optics; 
Mathematics: Philosophy and Practice; Numbers, Geometry and Architecture; 
Seventeenth-century Transmission of Astronomy; Science and Medicine in the 
Maghrib and al-Andalus. This subdivision does not do full justice to the multi-
ple ways in which the twelve chapters are connected. Most of the chapters are, 
in one way or another, related to transmission of scientific knowledge, either 
from one culture to another (Kunitzsch, Burnett, Kheirandish, Sabra, Endress, 
Berggren, Pingree), or within the medieval Islamic world itself (Kunitzsch, 
Samsó, Djebbar). Three chapters discuss mainly astronomy (Burnett, Pingree, 
Samsó), five chapters are entirely or mainly on mathematics (Kunitzsch, Berg-
gren, Sesiano, Dold, Djebbar), two chapters are on optics (Sabra, Kheirandish), 
while the chapter by Endress concerns the philosophy of the mathematical sci-
ences. Several chapters are concerned with the relations between the exact sci-
ences and other fields, such as natural philosophy (Kheirandish, Endress), 
architecture (Dold), medicine (Langermann). Some chapters concern outsider’s 
views on mathematics and its use (Endress, Langermann), and medieval debates 
on scientific methodology (Berggren, Sabra). Two chapters discuss the individ-
ual mathematicians al-K¥h• (Berggren) and al-Kåsh• (Dold), whose styles and 
attitudes turn out to be very different. The chapters by Djebbar, Langermann, 
and Samsó concern geographical areas, which will be indicated by their medi-
eval Islamic names: al-Andalus is Islamic Spain and Portugal, that part of the 
Iberian peninsula that belonged to the medieval Islamic world, and the Maghrib 
is Northwestern Africa, that is, modern Morocco, Algeria, and Tunisia. 

The chapters in this volume are mainly based on the analysis of (often 
unpublished) sources in Arabic and other languages. These documents are 
usually scientific, but may also include literary sources and biographies 
(Kunitzsch, Djebbar). In some of the chapters, the authors use special methods 
to argue their new insights, ranging from the philological analysis of technical 
terms in different languages (Burnett, Kheirandish), via the analysis of differ-
ent systems of numerals (Kunitzsch, Burnett), to computer analysis of numeri-
cal tables (Samsó).
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Several chapters summarize many years of research work by their authors, 
as the following three examples show. Berggren’s characterization of al-K¥h• as 
a mathematician is the outcome of his project to publish a complete edition of 
al-K¥h•’s works; Sabra’s analysis of the argument of Books I–VII of Ibn al-
Haytham’s Optics is based on his Arabic edition and English translation of this 
large and fundamental work; Djebbar’s survey of mathematics and astronomy 
in the Maghrib and Andalusia includes his own research and that of his pupils. 
Several chapters deal with striking examples of originality of the Islamic tradi-
tion (Sabra, Dold, Sesiano). 

Not surprisingly, the chapters in this volume support the view that the 
Islamic scientific tradition was even richer, more profound, and with more 
complex relations to other cultures than had been thought hitherto. As more 
sources become gradually available, our picture also becomes more detailed. 
Thus, Berggren is now able to characterize Ab¥ Sahl al-K¥h• as a conserva-
tive, “old-guard” mathematician among his contemporaries, Djebbar is able to 
list differences between the algebraic traditions in al-Andalus and the Maghrib, 
and so on. Most of the chapters also confront the reader with unsolved histor-
ical problems. Thus, Kunitzsch reminds us that it is still unknown when and 
where the Hindu-Arabic number symbols evolved from the Eastern Islamic 
forms (now used in the middle East) to the Western Islamic forms, which are 
virtually identical to the modern forms 1,2,3,4,5,6,7,8,9,0. In spite of all the 
progress, much about science in the Islamic tradition is still unknown.

Since some of the authors have different preferences for systems of refer-
encing and on the precise ways to transcribe or write Arabic names, the editors 
have decided not to interfere with these preferences. Thus the same name may 
appear in different chapters in slightly different forms, for example, Abu’l-
Ray˙ån, Ab¥ al-Ray˙ån, and Ab¥ ar-Ray˙ån; al-K¥h•, al-Q¥h•. 

The “new perspectives” in each chapter will now be briefly outlined in 
the rest of this introduction, under the six headings mentioned above. 

Cross-cultural Transmission

In his chapter, “The Transmission of Hindu-Arabic Numerals Reconsidered,” 
Paul Kunitzsch strives to distinguish between, on the one hand, what can be 
accepted as fairly established fact in regard to this widely discussed subject, 
and, on the other, what still remains uncertain and in need of further study. 
Kunitzsch accepts the usually cited evidence presented by the Arabic and Syr-
iac sources in support of the thesis that the nine numerals plus a symbol for an 
empty place initially came to the Arabs from India in the eighth century. He 
notes that variable forms of the nine numerals continued to be used well into 
the eleventh century, but rejects the hypothesis, once proposed by S. Gandz, 
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that the dust board utilized by the Arabic mathematicians for performing their 
calculations later became the model for the Latin abacus. 

Kunitzsch argues in the second part of his chapter that the term dust 
numerals (Arabic: ˙ur¥f al-ghubår), rather referred to the written figures, as 
opposed to the non-written numerals signified in processes known as men-
tal reckoning or finger reckoning. The majority of the numerals current in 
the Arabic/Islamic West (the Maghrib and al-Andalus) could be obtained, so 
Kunitzsch remarks, from their Eastern counterparts. Thus, while the general 
line of borrowing of the numerals appears quite clear, Kunitzsch emphasizes 
the need for further research to establish the existence of the Hindu-Arabic 
numerals in the Western-Islamic sources prior to AD 1300. This should help 
to clear up the process of early Latin borrowing by way of the twelfth-century 
Arabic-Latin translations.

In his chapter, “The Transmission of Arabic Astronomy via Antioch and 
Pisa in the Second Quarter of the Twelfth Century,” Charles Burnett studies a 
hitherto neglected channel of transmission of the exact sciences from the East-
ern Islamic world to Christian Europe before Toledo emerged as a center of the 
translation industry, and the first translation of Ptolemy’s Almagest was pro-
duced in Sicily from Greek. Burnett’s first source is a medieval Latin manu-
script of Book I–IV of the Almagest of Ptolemy (ca. 150 AD), now in Dresden. 
By a meticulous analysis of the technical terminology and the numerals that 
were used, Burnett shows that this “Dresden Almagest” was translated from an 
Arabic version around 1120 in Antiochia (now in Turkey), and that the transla-
tor wanted to give the impression that he had translated the work from Greek. 
Burnett then introduces a second source, a cosmological work in Latin enti-
tled Liber Mamonis, which is written in the same technical terminology as 
the Dresden Almagest. Burnett shows that this work was inspired by Arabic 
sources, and he suggests that the title is derived from one such source, the 
Verified Astronomical Tables (Al-Z•j al-Mumta˙an) by the astronomers around 
Caliph al-Ma<m¥n in the early ninth century. Burnett identifies the author of 
the Liber Mamonis as Stephanus the philosopher, who originated from Pisa 
but who worked in Antiochia around 1120. Burnett argues that the “Dresden 
Almagest” was written in the same milieu. In the last part of his chapter, he 
studies a third work, the Tables of Pisa, which is based on the lost astronomi-
cal tables of the Iranian astronomer al-Í¥f• (d. 986), and which has often been 
related to the Jewish astronomer Abraham ibn Ezra (d. ca. 1160). By an anal-
ysis of the systems of numeration used in the Tables of Pisa, Burnett estab-
lishes a clear connection with the Liber Mamonis, and hence with Antiochia. 
Thus, Antiochia is shown to be an important center for the early transmission 
of astronomy from Arabic into Latin.
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Transformations of Greek Optics

The science of optics (Arabic: >ilm al-manåΩir, Greek: h∑ optik∑ techn∑) is per-
haps unique as a Greek mathematical discipline that received in the Islamic 
middle ages a radical transformation which ultimately succeeded in launching 
it on an entirely new course. As a mode of inquiry consisting of a combined 
mathematical and experimental approach to visual perception, optics was rep-
resented in Greek antiquity by works of Euclid (ca. 300 BC), Ptolemy (second 
century AD), and Theon of Alexandria (fourth century AD), all of which carried 
the title Optika, and at least two of which, namely those of Euclid and Ptolemy, 
came to be known in Arabic translations, some made as early as the ninth cen-
tury, and given the title al-ManåΩir. The radical transformation took place in 
the first half of the eleventh century, in the large seven-part work of al-Óasan 
ibn al-Haytham, Kitåb al-ManåΩir. This work had the good fortune of finding 
its way to Muslim Spain where a Latin translation was made of it probably in 
the late twelfth century, thereby securing an entry into the main stream of Euro-
pean scientific, mathematical, and philosophical thought where it is known to 
have exerted considerable influence that lasted all the way up to the seven-
teenth century.

In her chapter, “The Many Aspects of Appearances,” Elaheh Kheirandish 
focuses on transformations occurring already through the ninth-century Ara-
bic assimilation of central Greek optical terms, beginning with the Greek and 
Arabic names for the discipline itself. She takes as her starting point a chap-
ter in al-Fåråb•’s Catalogue of the Sciences (first half of the tenth century), a 
work later also widely known in Europe in a medieval Latin translation. Al-
Fåråb• was a philosopher, and not himself one of those who contributed to 
the mathematical science of vision. But his chapter offers a valuable picture 
of the discipline and a set of operative terms in it as understood by an intelli-
gent witness from the century immediately preceding that of Ibn al-Haytham. 
Kheirandish further elaborates her analysis by critical comparisons with terms 
and phrases found in the writings of the ninth-century Arabic writers and their 
Greek sources. 

Following the order of exposition in al-Fåråb•’s chapter, Kheirandish 
organizes her discussion in sections under five headings: I. Veracity and Accu-
racy of Vision, in which she notes a particular emphasis on two aspects of 
appearances, namely veracity and accuracy, and a greater emphasis in al-Fåråb• 
on the latter than on the former; II. Justifiability and Variety of Demonstra-
tion, noting the concern of optics with explanation understood as a demonstra-
tive procedure, and the connected quantification of visual clarity, by which she 
does not of course mean to imply any kind of measurement; III. Versatility and 
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Fallibility of Applications, where she regrets the fact that al-Fåråb•’s recogni-
tion of various applications of optics does not lead him to a discussion of mir-
rors and the principle of reflection, a neglect which in addition to the omission 
of surveying she finds surprising, and one of the problematic cases of trans-
mission; and, finally, IV. Elements and Mechanisms of Vision, and V. Modes 
and Mediums of Operation, in which Kheirandish goes into the widespread 
and, sometimes, substantive confusion between optical reflection and refrac-
tion of visual rays. This confusion strangely persisted in the works of Naß•r al-
D•n al-ˇ¥s• and Qu†b al-D•n al-Sh•råz• in the thirteenth century, and until Ibn 
al-Haytham’s work became generally known to Arabic readers, thanks to the 
comprehensive Commentary made by al-Sh•råz•’s gifted student, Abu ’l-Óasan 
Kamål al-D•n al-Får•s• more than two hundred years after Ibn al-Haytham died 
(ca. 1041), and probably more than a hundred years after the latter’s Kitåb al-
ManåΩir began to be utilized by readers of Latin. 

In the following chapter by A. I. Sabra, “Ibn al-Haytham’s Revolution-
ary Project in Optics: The Achievement and the Obstacle,” the author claims 
to use “revolution” in the strict sense of a conscious and radical transforma-
tion of a widely practiced and accepted approach to a whole scientific disci-
pline, a transformation that goes to the heart of the basic assumptions of the 
traditional system. Sabra does not believe that Ibn al-Haytham’s departure 
from tradition was a creatio ex nihilo, and accordingly he stresses elements 
borrowed from earlier methods and doctrines, especially those derived from 
Ptolemy’s Optics and Aristotelian physics; but Sabra tries to show that these 
elements now serve different functions in a new system. The chapter is actually 
an outline of the single, continuous argument which, according to Sabra, runs 
through all the seven books that make up the Optics of Ibn al-Haytham: Hav-
ing totally rejected, on the basis of empirical evidence, the visual-ray hypothe-
sis as the foundation of previous mathematical theories of vision, and aligning 
himself (again on the basis of experience) with the Peripatetic view of vision 
as the reception of forms of light and color, Ibn al-Haytham was led to accord 
psychology a new, inevitable and fundamental role never realized earlier in 
the works of the Greek mathematicians and their Arabic successors. The new 
approach further leads Ibn al-Haytham to reformulate the existing explanations 
of rectilinear transmission, reflection and refraction of light in ways that may 
conform with the older geometry, but that also generate new problems posed 
by his own treatment of specular images, as Sabra notes. 

The obstacle referred to in the title of Sabra’s chapter has to do with the 
doctrine, inherited from Galen, locating the sensitivity of the eye in the crystal-
line humor. This was a fateful error which forced Ibn al-Haytham to fall back 
on psychology in a last attempt (in Book VII) to explain crucial experiments 
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that he was the first to describe in the history of optics. The erroneous doctrine 
was itself again adopted as an empirically established fact of ocular physiol-
ogy, but this time Ibn al-Haytham put his trust in what was widely reported 
and accepted by the medical tradition as empirical proof. It was from here, as 
Sabra remarks but does not discuss, that Kepler started his own researches that 
led to his well-known breakthrough in the Paralipomena ad Vitellionem, pub-
lished in 1604.

Mathematics: Philosophy and Practice

Gerhard Endress begins his survey chapter, “Mathematics and Philosophy 
in Medieval Islam,” with a summary of the views of the two most important 
ancient Greek philosophers on mathematics and astronomy. Plato believed that 
number and mathematics were related to an eternal world of ideas, which is 
the essence and source of the changing world in which we live. Aristotle, on 
the other hand, believed that mathematics was abstracted from reality and not 
directly related to the essence of the real world. However, he believed that the 
properties of the real world could be deduced from a few basic principles of 
natural philosophy, in a way somewhat similar to the deductive reasoning in 
geometry. Unfortunately, Aristotle drew up his cosmological principle of uni-
form rotation around the center of the earth at a time when astronomy was 
still in a qualitative state. When Ptolemy worked out his planetary theory in 
the second century AD, he could only make his models correspond to reality 
by introducing epicycles and equant points. The resulting contradiction with 
the Aristotelian principle of uniform motion around the center of the earth was 
never resolved in antiquity.

Endress then turns to the attitude of the most important Islamic philos-
ophers with respect to the mathematical sciences. The early philosopher al-
Kind• (ca. 830) and his followers considered mathematics, in the Platonic vein, 
as an intermediary between philosophy and the science of nature. Al-Fåråb• 
(d. 950) accepted the Aristotelian view of mathematics and natural science, 
and the same is basically true for Ibn S•nå (Avicenna, d. 1037). These philoso-
phers were not astronomers, but Ibn al-Haytham (d. ca. 1040) was a competent 
astronomer who tried to bridge the gap between Aristotelian physics and Ptol-
emaic astronomy. He finally came to the conclusion that astronomical models 
had to be deduced by demonstrative reasoning (in the way of Aristotle) from 
basic principles different from those enunciated by Aristotle, and that the ad-
hoc devices used by Ptolemy were unsatisfactory. However, Ibn al-Haytham 
did not work out a new astronomical system of his own.

Endress then turns to the Andalusian astronomers and philosophers, 
who distinguished between the natural philosophy of Aristotle, dealing with 
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essences and causes, and the geometrical models of the astronomers. These 
Andalusian scholars believed that these mathematical models dealt only with 
accidental properties, abstracted from reality, and thus one could not use them 
to penetrate into reality in its own right. They believed that Aristotle had 
reached human perfection, and they made a few hopeless attempts to pro-
pose Aristotelian alternatives to Ptolemy’s models in order to (re?)construct 
a true Aristotelian cosmos. Endress presents an interesting quotation from the 
famous Ibn Rushd/Averroes (d. 1198), expressing frustration and unhappiness 
with the results.

In the final section, Endress discusses the Jewish philosopher Maimonides 
(d. 1204) and late Islamic thinkers, who decided that “natural philosophy” is 
domain of God, and that Aristotelian natural philosophy ought to be discarded 
as contrary to religion. They argued that the astronomers were free to imagine 
models that correspond to observation and make possible predictions, an atti-
tude that may strike us as quite modern.

Whereas Endress’s chapter is devoted to the views of relative outsiders 
(astronomers and philosophers) on the nature and use of mathematics, J. L. 
Berggren studies an insider’s view in his chapter “Tenth-Century Mathematics 
through the Eyes of Ab¥ Sahl al-K¥h•.” As many other research mathematicians 
in his time, al-K¥h• was fascinated by geometry in the style of the Hellenistic 
geometers, and some of his tenth-century contemporaries regarded him as the 
“master of his age in the art of geometry.” Berggren suggests, plausibly, that al-
K¥h• was fascinated by the certainty of geometrical knowledge. He preferred 
to work on problems discussed in or inspired by the ancient Greek geometry of 
Archimedes and Apollonius, such as geometrical constructions of the regular 
heptagon and other figures by means of conic sections, and the determination 
of the volumes and centers of gravity of solids including the paraboloid. Berg-
gren states that among tenth-century geometers, al-K¥h• was unique in finding 
and (generally) solving geometrical problems of some real depth.

Al-K¥h• believed in the progress of science and he says that “the sci-
ence of geometry will endure and will continue to grow, in contrast to man’s 
life span, which comes to an end.” He contributed to methodological debates 
on analysis and synthesis, the mathematical concept of a “known ratio” in con-
nection with the quadrature of the circle, and the question to what extent it was 
legitimate to use motion in geometry. Unlike most of his colleague-mathema-
ticians, al-K¥h• was uninterested in arithmetic, algebra, and trigonometry. He 
even regarded mathematics based on numerical approximations as “bad” math-
ematics because it is not based on exact and demonstrative methods. Berggren 
concludes that al-K¥h• was rather conservative in his outlook, and that he may 
have been the last mathematician to look on mathematics with the eyes of the 
great Hellenistic geometers. 
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Numbers, Geometry, and Architecture

The Islamic mathematicians contributed not only to geometry but also to the 
theory of numbers, and they studied a combination of the two in what they 
called “harmonious dispositions of numbers” (Arabic: a>dåd al-wafq), nowa-
days called magic squares. A magic square is a square array of integer num-
bers, with the property that the sums of all elements in each column, row, or 
diagonal are equal. In modern terms, the number of elements in each row, col-
umn, or diagonal is called the order of the magic square, and the sum of the 
elements in each row, column, or diagonal is called the magical constant.1 
Although magic squares are probably of pre-Islamic (Persian?) origin, there is 
no evidence that they were seriously studied before the Islamic tradition. The 
title of Jacques Sesiano’s chapter, “Quadratus Mirabilis,” is the name he has 
given to the most complex type of magic squares that has hitherto been found 
in the entire medieval Islamic tradition. The construction of this type of magic 
square is explained in a text by the late tenth-century mathematician al-An†åk•, 
but Sesiano points out that it may have been discovered earlier. For each integer 
n, al-An†åk• constructs a magic square of order n, composed of the numbers 1, 
2, . . . n2, with the following two properties:

1. The odd numbers 1, 3, . . . are placed in a rhombus in the middle of the square 
and the even numbers 2, 4 . . . in four triangular corners of the square;

2. The magic square is “bordered,” that is to say that if all 4n – 4 numbers on the 
outside are taken away, the remaining square is also a new magic square of order 
n – 2, and if all 4n – 12 numbers on the outside of this new square are taken away, 
the remaining square is also a magic square, and so on, until one is left with a magic 
square of order 4 or 3.

Sesiano gives a transcription of the construction of this “Quadratus 
Mirabilis” in modern notation as well as a literal translation of the Arabic text 
of al-An†åk•. His chapter shows that the theory of magic squares reached a 
much higher level in the tenth century than had been thought before. The term 
“magic square” is European, and as Sesiano points out, magic squares were 
mostly investigated in the Islamic tradition because of their mathematical as 
well as recreational interest. Most magical “applications” of these squares are 
relatively late and only utilize the simplest forms.

The relation between geometry, numerical computation and architecture 
is explored in the chapter by Yvonne Dold-Samplonius, which is entitled “Cal-
culating Surface Areas and Volumes in Islamic Architecture.” She begins with 
a concise introduction to Islamic architecture. Not much is known about the 
relations between architecture and mathematics in the early Islamic tradition, 
but the available evidence suggests that sophisticated mathematics entered 
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Islamic architecture relatively late in the tradition. (Of course, future research 
may show this impression to be incorrect.) Dold lists a number of rough calcu-
lations of volumes and surfaces of domes from various practical mathematical 
works until the thirteenth century, and she compares these calculations with the 
sophisticated approach in the Key to Arithmetic of al-Kåsh•, who died around 
1429 in Samarkand. Al-Kåsh• computed various coefficients which enabled 
craftsmen to easily find surfaces and volumes of various types of domes found 
in Central Asia. His computations are unrelated to earlier Islamic studies on the 
volume of parabolic domes (paraboloids) of a more theoretical nature, which 
Dold characterizes as “highschool mathematics.” One of the authors of these 
more theoretical studies was al-K¥h•, the subject of Berggren’s chapter in this 
volume. Dold finishes her chapter with a brief look at al-Kåsh•’s discussion 
of the stalactite vaults called “muqarnas,” which are characteristic of Islamic 
architecture.

Al-Kåsh• had a talent for finding user-friendly and highly accurate approx-
imative solutions of difficult practical problems which cannot be solved exactly, 
and this is why Dold-Samplonius calls him “the first modern mathematician.” 
Her view is supported by further mathematical analysis of al-Kåsh•’s calcu-
lations. Thus, al-Kåsh• and al-K¥h• represent two radically different types of 
Islamic mathematicians. 

Seventeenth-century Transmission of Astronomy

The chapters in this section by David Pingree and Julio Samsó discuss con-
crete examples of transmission of Islamic science after the medieval period. 
Both chapters are related to the tradition of the famous astronomical hand-
book (Z•j) of Ul¥gh Beg (1393–1449), the ruler of Samarkand who founded 
an astronomical observatory and appointed al-Kåsh• as its director. As Pin-
gree explains in his chapter, “The Sarvasiddhåntaråja of Nityånanda,” the Z•j 
of Ul¥gh Beg was revised in the early seventeenth century at the court of the 
Moghul emperor Shah Jahån at Delhi, and the reworking was then translated 
into Sanskrit by Nityånanda. Because the translation failed to find favor with 
the traditional Hindu astronomers at Delhi, Nityånanda decided to write a San-
skrit apology for Islamic astronomy, entitled Sarvasiddhåntaråja. Pingree pres-
ents a detailed analysis of chapters 2 and 3 of this work, on the computation 
of the mean and true longitudes of the planets. Nityånanda rephrased Islamic 
astronomy in a language which Hindu astronomers could understand, and thus 
he expressed the planetary mean motions in integer revolutions in a Kalpa of 
4,320,000,000 years. He also tried to show that the differences between tradi-
tional Hindu astronomy and what he called the “Roman Z•j,” that is, the new 
Islamic system, were only small. Nityånanda gave only numerical algorithms 
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and he did not discuss the geometrical background of the Islamic (essentially 
Ptolemaic) models of planetary motion; since he also failed to define many of 
his new technical terms, his colleagues must have found it hard to understand 
his work. Pingree points out that some of the new vocabulary in the Sarvasid-
dhåntaråja was nevertheless used in other translations made at Delhi a few 
years later, for example in the Sanskrit prose version of the Tabulae Astronom-
icae of Philippe de la Hire (1640–1718). Thus, Pingree’s chapter sheds light 
on one of the most neglected areas in the history of the transmission of Islamic 
astronomy, namely its development and influence in South Asia.

Julio Samsó’s chapter, “On the Lunar Tables in Sanjaq Dår’s Z•j al-
Shar•f,” is related to the complex transmission of astronomical knowledge 
from the Eastern to the Western Islamic world. From the ninth through the 
eleventh centuries, there existed a special type of Islamic astronomy in al-
Andalus. One of the characteristics of this Andalusian astronomy is the exis-
tence of special theories to explain the supposed phenomenon of “trepidation,” 
that is the oscillation in the ecliptic longitudes of all fixed stars with respect 
to the vernal point. These theories were also studied in the Maghrib. East-
ern Islamic astronomers, such as Mu˙y• al-D•n al-Maghrib• and Ibn al-Shå†ir, 
rejected trepidation, and from the late 14th century on, their theories were also 
transmitted to the Maghrib. From that time on, the astrologers in the Maghrib 
continued to use the older Andalusian astronomy, while the more sophisticated 
Eastern Islamic astronomy was used by the astronomers and muwaqqits (offi-
cial time-keepers in mosques). The Z•j of Ul¥gh Beg was apparently transmit-
ted to the Maghrib in the 17th century, and Julio Samsó studies the influence of 
that work on the 17th-century Z•j al-Shar•f (“Noble Astronomical handbook”) 
by Sanjaq Dår of Tunis. Samsó briefly summarizes the complex (essentially 
Ptolemaic) astronomical contents of this work, and using computer programs 
developed by Benno van Dalen, he analyzes the lunar tables, to establish the 
dependency of Z•j al-Shar•f on the Z•j of Ul¥gh Beg in detail. The technical 
terminology and the concrete examples of numerical tables in Samsó’s chapter 
may give the reader some idea of the knowledge and skills which a medieval 
Islamic astronomer needed in order to compile an astronomical handbook (Z•j) 
for his own city and time.

Science and Medicine in the Maghrib and al-Andalus

Ahmed Djebbar’s contribution to this volume, entitled “A Panorama of Re-
search on the History of Mathematics in al-Andalus and the Maghrib between 
the Ninth and Sixteenth Centuries,” is a unique survey of the research done by 
modern historians between 1834 and 1980 on the history of medieval math-
ematics and astronomy in those geographical areas. Djebbar treats not only 
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Western literature but also the research by Arabic scholars in the nineteenth 
and twentieth centuries, and he comments on the historical and political moti-
vations of these Arabic researchers. For the period after 1980, Djebbar sum-
marizes much of the work of his own research group at the École Normale 
Supérieure in Algiers, which is now the most important center for the study of 
medieval Maghribi mathematics and astronomy. The survey shows the prog-
ress that has been made in the last decades in our understanding of medieval 
Maghribi science, as well as a number of its more puzzling aspects, which will 
have to be clarified by future research. Examples are the discontinuities in the 
transmission from the Eastern Islamic to the Western Islamic world, the fact 
that mathematics in the Maghrib was limited to arithmetic from the late 13th 
century onwards, the transmission of Euclid’s Elements and other geometrical 
works, and the silence of the bio-bibliographical works on the algebraic tra-
dition in al-Andalus and the Maghrib. Libraries in the Maghrib contain mas-
sive amounts of unpublished Arabic manuscripts and it is expected that further 
study of these sources will not only shed light on these open problems, but also 
reveal many more details about the mathematical and astronomical traditions 
in specific periods and specific areas of the Maghrib. 

In his chapter “Another Andalusian Revolt? Ibn Rushd’s Critique of al-
Kind•’s Pharmacological Computus,” Tzvi Langermann touches upon the ques-
tion which some have raised with regard to intellectual developments in North 
Africa and Muslim Spain under the rule of the ideologically driven Almohads/
al-Muwa˙˙id¥n (524–667/1130–1269), namely whether certain trends in sci-
ence, medicine and philosophy, as well as in Islamic law and Arabic grammar, 
could be interpreted as manifestations of a general revisionist attitude toward 
the established authorities in those fields in the Eastern Islamic world. Evidence 
for the revisionist thesis in a scientific field has previously been expounded 
with reference to the conscious and reasoned rejection of the Eastern decision 
in favor of Ptolemaic, as opposed to Aristotelian astronomy, by Andalusian 
scholars, including especially the famous Ibn Rushd/Averroes, who referred 
to the Ptolemaic system of eccentrics and epicycles as “the astronomy of our 
time.” Langermann is concerned with another episode: Ibn Rushd’s vehement 
attack, in his medical textbook, Kitåb al-Kulliyyåt, on the work of the East-
ern ninth century polymath, al-Kind•, in which the latter proposed a new, non-
Galenic computus for calculating the right quantities of simple drugs, in order 
to produce the desired degree of their compounded elemental qualities: heat, 
cold, dry, and moist. Averroes objected, among other things, that al-Kind• was 
causing confusion in a medical subject by straying too far beyond the boundar-
ies and the rules or laws/qawån•n proper to a natural inquiry, such as the art of 
medicine, into considerations of numbers and music. It is known that Averroes, 



Introduction xviii Introduction xix

in a commentary on Aristotle’s Meteorology, raised an exactly parallel objec-
tion against the role of mathematics in the “physical” work of another East-
erner, Ibn al-Haytham.

Langermann here refrains from directly answering the general, cultural 
question: hence the question mark in his title. And, following a good maxim, 
truth is in the details, he offers in the first part of his chapter a lucid and enlight-
ening analysis of many of the details involved in Averroes’s arguments, with 
due emphasis on their immediate medical context in the writings of authorities 
from Galen to medical authors in the Arabic tradition, including members of 
the distinguished Andalusian Ibn Zuhr family. In the second part of his chapter, 
devoted to the question of Contexts (thus in the plural), Langermann observes 
the lack of general interest in Kind•’s computus, but refers to a lost treatise by 
the influential Abu ’l->Alå< ibn Zuhr (d. 1130), directly addressed to al-Kind•’s 
book. Why [then] was there so little interest in al-Kind•’s book? Langermann 
asks, and delivers the most plausible answer: while pharmacologists (in the 
East and the West) were spurred by practical applications, Ibn Rushd, as the 
confirmed Aristotelian philosopher, was (doggedly?) concerned for what he 
took to be Aristotelian methodology. Langermann concludes with the advice 
that full attention should be given to the persistent interest in pharmacology 
in its own right. His final paragraph refers to the great Ab¥ Marwån ibn Zuhr 
(Avenzoar, d. 1161), son of Abu ’l->Alå< and close friend to Ibn Rushd, who had 
served as waz•r and physician to the founder of the Almohad dynasty, >Abd al-
Mu<min (1130–1163), and who had written his medical work al-Tays•r on the 
advice of Ibn Rushd. This reference calls up again the ghost of an underlying 
Andalusian ideological tendency whose many ramifications for the intellec-
tual history of Muslim Spain and the Maghrib still need to be defined and ade-
quately explored. 

 The Editors

Note

1. If the order of the magic square is n and the consecutive numbers are 1 . . .n2, 
the magical constant is 1

n
(12 + 22 + . . . + n2) = 1

2
n(n2 + 1).
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Cross-Cultural Transmission





For the last two hundred years the history of the so-called Hindu-Arabic nu-
merals has been the object of endless discussions and theories, from Michel 
Chasles and Alexander von Humboldt to Richard Lemay in our times. But I 
shall not here review and discuss all those theories. Moreover I shall discuss 
several items connected with the problem and present documentary evidence 
that sheds light—or raises more questions—on the matter. 

At the outset I confess that I believe the general tradition, which has it 
that the nine numerals used in decimal position and using zero for an empty 
position were received by the Arabs from India. All the oriental testimonies 
speak in favor of this line of transmission, beginning from Severus S∑bøkht in 
6621 through the Arabic-Islamic arithmeticians themselves and to Muslim his-
torians and other writers. I do not touch here the problem whether the Indian 
system itself was influenced, or instigated, by earlier Greek material; at least, 
this seems improbable in view of what we know about Greek number notation. 

The time of the first Arabic contact with the Hindu numerical system 
cannot safely be fixed. For S∑bøkht (who is known to have translated portions 
of Aristotle’s Organon from Persian) Fuat Sezgin2 assumes possible Persian 
mediation. The same may hold for the Arabs, in the eighth century. Another 
possibility is the Indian embassy to the caliph’s court in the early 770s, which 
supposedly brought along an Indian astronomical work, which was soon trans-
lated into Arabic. Such Indian astronomical handbooks usually contain chap-
ters on calculation3 (for the practical use of the parameters contained in the 
accompanying astronomical tables), which may have conveyed to the Arabs 
the Indian system. In the following there developed a genre of Arabic writings 
on Hindu reckoning (f• l-˙isåb al-hind•, in Latin de numero Indorum), which 
propagated the new system and the operations to be made with it. The oldest 
known text of this kind is the book of al-Khwårizm• (about 820, i.e., around 
fifty years or more after the first contact), whose Arabic text seems to be lost, 
but which can very well be reconstructed from the surviving Latin adapta-
tions of a Latin translation made in Spain in the twelfth century. Similar texts 
by al-Uql•dis• (written in 952/3), K¥shyår ibn Labbån (2nd half of the 10th 
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century) and >Abd al-Qåhir al-Baghdåd• (died 1037) have survived and have 
been edited.4 All these writings follow the same pattern: they start with a des-
cription of the nine Hindu numerals (called a˙ruf, plural of ˙arf; Latin lit-
terae), of their forms (of which it is often said that some of them may be written 
differently), and of zero. Then follow the chapters on the various operations. 
Beside these many more writings of the same kind were produced,5 and in later 
centuries this tradition was amply continued, both in the Arabic East and West. 
All these writings trace the system back to the Indians. 

The knowledge of the new system of notation and calculation spread 
beyond the circles of the professional mathematicians. The historian al-Ya>q¥b• 
describes it in his Tår•kh (written 889)—he also mentions zero, ßifr, as a small 
circle (då<ira ßagh•ra).6 This was repeated, in short form, by al-Mas>¥d• in his 
Mur¥j.7 In the following century the encyclopaedist Mu˙ammad ibn A˙mad al-
Khwårizm• gave a description of it in his Mafåt•˙ al->ul¥m (around 980); also 
he knows the signs for zero (aßfår, plural) in the form of small circles (dawå<ir 
ßighår).8 That the meaning of ßifr is really “empty, void” has been nicely 
proved by August Fischer,9 who presents a number of verses from old Arabic 
poetry, where the word occurs in this sense. It may thus be regarded as beyond 
doubt that ßifr, in arithmetic, indeed renders the Indian ∞¥nya, indicating a 
decimal place void of any of the nine numerals. Exceptional is the case of the 
Fihrist of Ibn al-Nad•m (around 987, that is, contemporaneous with the ency-
clopaedist al-Khwårizm•). This otherwise well-informed author apparently did 
not recognize the true character of the nine signs as numerals; he treats them 
as if they were letters of the Indian alphabet.10 He juxtaposes the nine signs to 
the nine first letters of the Arabic abjad series and says that, if one dot is placed 
under each of the nine signs, this corresponds to the following (abjad) letters 
yå< to ßåd, and with two dots underneath to the remaining (abjad) letters qåf 
to Ωå< (with some defect in the manuscript transmission). This sounds as if he 
understood the nine signs and their amplification with the dots as letters of the 
Indian alphabet. Even a Koranic scholar, Ab¥ >Amr >Uthmån al-Dån• (in Mus-
lim Spain, died 1053), knows the zero, ßifr, and compares it to the common 
Arabic orthographic element suk¥n.11 (For all these authors it must be kept in 
mind that the manuscripts in which we have received their texts date from more 
recent times and therefore may not reproduce the forms of the figures in the 
original shape once known and written down by the authors.) 

Of some interest in this connection are, further, two quotations recorded 
by Charles Pellat: the polymath al-Jå˙iΩ (died 868) in his Kitåb al-mu>allim•n 
advised schoolmasters to teach finger reckoning (˙isåb al->aqd) instead of 
˙isåb al-hind, a method needing “neither spoken word nor writing”; and the 
historian and literate Mu˙ammad ibn Ya˙yå al-Í¥l• (died 946) wrote in his 
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Adab al-kuttåb: “The scribes in the administration refrain, however, from using 
these [Indian] numerals because they require the use of materials [writing-
tablets or paper?] and they think that a system which calls for no materials and 
which a man can use without any instrument apart from one of his limbs is 
more appropriate in ensuring secrecy and more in keeping with their dignity; 
this system is computation with the joints (>aqd or >uqad) and tips of the fingers 
(banån), to which they restrict themselves.”12 

The oldest specimens of written numerals in the Arabic East known to 
me are the year number 260 Hijra (873/4) in an Egyptian papyrus and the 
numerals in MS Paris, BNF ar. 2457, written by the mathematician and astro-
nomer al-Sijz• in Sh•råz between 969 and 972. The number in the papyrus 
(figure 1.1)13 may indicate the year, but this is not absolutely certain.14 For an 
example of the numerals in the Sijz• manuscript, see figure 1.2. It is to be noted 
that here “2” appears in three different forms, one form as common and used 
in the Arabic East until today, another form resembling the “2” in some Latin 
manuscripts of the 12th century, and a form apparently simplified from the lat-
ter; also “3” appears in two different forms, one form as common in the East 
and used in that shape until today, and another form again resembling the “3” 
in some Latin manuscripts of the 12th century.

Figure 1.1
Papyrus PERF 789. 
Reproduced from Grohmann, Pl. LXV, 12
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Figure 1.2

MS Paris, B. N. ar 2457, fol 85v. Copied by al-Sijz•, Sh•råz, 969–972
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This leads to the question of the shape of the nine numerals. Still after 
the year 1000 al-B•r¥n• reports that the numerals used in India had a variety 
of shapes and that the Arabs chose among them what appeared to them most 
useful.15 And al-Nasaw• (early eleventh century) in his al-Muqni> f• l-˙isåb al-
hind• writes at the beginning, when describing the forms of the nine signs, “Les 
personnes qui se sont occupées de la science du calcul n’ont pas été d’accord 
sur une partie des formes de ces neuf signes; mais la plupart d’entre elles sont 
convenues de les former comme il suit”16 (then follow the common Eastern 
Arabic forms of the numerals). 

Among the early arithmetical writings that are edited al-Baghdåd• men-
tions that for 2, 3, and 8 the Iraqis would use different forms.17 This seems to be 
corroborated by the situation in the Sijz• manuscript. Further, the Latin adapta-
tion of al-Khwårizm•’s book says that 5, 6, 7, and 8 may be written differently. 
If this sentence belongs to al-Khwårizm•’s original text, that would be astonish-
ing. Rather one would be inclined to assume that this is a later addition made 
either by Spanish-Muslim redactors of the Arabic text or by the Latin translator 
or one of the adapters of the Latin translation, because it is in these four signs 
(or rather, in three of them) that the Western Arabic numerals differ from the 
Eastern Arabic ones.18 

Another point of interest connected with Hindu reckoning and the use of 
the nine symbols is: how these were used and in what form the operations were 
made. Here the problem of the calculation board is addressed. It was especially 
Solomon Gandz who studied this problem in great detail and who arrived at 
the result that the Arabs knew the abacus and that the term ghubår commonly 
used in Western Arabic writings on arithmetic renders the Latin abacus.19 As 
evidence for his theory he also cites from Ibn al-Nad•m’s Fihrist several East-
ern Arabic book titles such as Kitåb al-˙isåb al-hind• bi-l-takht (to which is 
sometimes added wa-bi-l-m•l ), “Book on Hindu Reckoning with the Board 
(and the Stylus).” I cannot follow Gandz in his argumentation. It is clear, on 
the one side, that all the aforementioned eastern texts on arithmetic, from al-
Khwårizm• through al-Baghdåd•, mention the takht (in Latin: tabula) and that 
on it numbers were written and—in the course of the operations—were erased 
(ma˙w, Latin: delere). It seems that this board was covered with dust (ghubår, 
turåb) and that marks were made on it with a stylus (m•l). But can this sort of 
board, the takht (later also law˙, Latin tabula), be compared with the abacus 
known and used in Christian Spain in the late tenth to the twelfth centuries? 
In my opinion, definitely not. The abacus was a board on which a system of 
vertical lines defined the decimal places and on which calculations were made 
by placing counters in the columns required, counters that were inscribed with 
caracteres, that is, the nine numerals (in the Western Arabic style) indicating 
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the number value. The action of ma˙w, delere, erasing, cannot be connected 
with the technique of handling the counters. On the other side, the use of the 
takht is unequivocally connected with writing down (and in case of need, eras-
ing) the numerals; the takht had no decimal divisions like the abacus, it was 
a board (covered with fine dust) on which numbers could be freely put down 
(Ibn al-Yåsam•n speaks of naqasha) and eventually erased (ma˙w, delere). 
Thus it appears that the Arabic takht and the operations on it are quite differ-
ent from the Latin abacus. Apart from the theoretical descriptions in the arith-
metical texts we have an example where an astronomer describes the use of the 
takht in practice: al-Sijz• mentions, in his treatise F• kayf•yat ßan>at jam•> al-
as†urlåbåt, how values are to be collected from a table and to be added, or sub-
tracted, on the takht.20 Furthermore it is worth mentioning that al-Uql•dis• adds 
to his arithmetical work a Book IV on calculating bi-ghayr takht wa-lå ma˙w 
bal bi-dawåt wa-qir†ås, “without board and erasing, but with ink and paper,” a 
technique, he adds, that nobody else in Baghdad in his time was versant with. 
All this shows that the takht, the dust board of the Arabs, was really used in 
practice—though for myself I have some difficulty to imagine what it looked 
like—and that it was basically different from the Latin abacus. 

Let me add here that the Eastern Arabic forms of the numerals also pene-
trated the European East, in Byzantium. Woepcke has printed facsimiles of the 
Arabic numerals appearing in four manuscripts of Maximus Planudes’ treatise 
on Hindu reckoning, Psephophoria kat’ Indous.21 

So far, at least for the Arabic East, matters appear to be reasonably clear. 
But now we have to turn to the Arabic West, that is, North Africa and Muslim 
Spain. Here we are confronted with two major questions, for only one of which 
I think an answer is possible, whereas the second cannot safely be answered for 
lack of documentary evidence. 

Question number one concerns the notion of ghubår. This term, meaning 
“dust” (in reminiscence of the dust board), is understood by most of the mod-
ern authorities as the current designation for the Western Arabic forms of the 
numerals; they usually call them “ghubår numerals.” 

It is indeed true that the term ghubår—as far as I can see—does not appear 
in book titles on Hindu reckoning or applied to the Hindu-Arabic numerals in 
the arithmetical texts of the early period in the Arabic East. On the contrary, in 
the Arabic West we find book titles like ˙isåb al-ghubår (on Hindu reckoning) 
and terms like ̇ ur¥f al-ghubår or qalam al-ghubår for the numerals used in the 
Hindu reckoning system. The oldest occurrence so far noticed of the term is in 
a commentary on the Sefer Yeßira by the Jewish scholar Ab¥ Sahl Dunas ibn 
Tam•m. He was active in Kairouan and wrote his works in Arabic. This com-
mentary was written in 955/6. In it Dunas says the following: “Les Indiens ont 
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imaginé neuf signes pour marquer les unités. J’ai parlé suffisamment de cela 
dans un livre que j’ai composé sur le calcul indien connu sous le nom de ˙isåb 
al-ghubår, c’est-à dire calcul du gobar ou calcul de poussière.”22 

The next work to be cited in this connection is the Talq•˙ al-afkår f• 
>amal rasm al-ghubår by the North African mathematician Ibn al-Yåsam•n 
(died about 1204). Two pages from this text were published in facsimile 
in 1973;23 on page 8 of the manuscript (= page 232 in the publication) the 
author presents the nine signs (ashkål) of the numerals which are called ash-
kål al-ghubår, “dust figures”; at first they are written in their Western Ara-
bic form, then the author goes on: wa-qad tak¥nu ay∂an håkadhå [here 
follow the Eastern Arabic forms] wa-låkinna l-nås >indanå >alå l-wa∂> al-
awwal, “they may also look like this . . . , but people in our [area] follow the 
first type.” (It should be noted that the manuscript here reproduced—Rabat 
K 222—is in Eastern naskh• and of a later date.) Another testimony is found 
in Íå>id al-Andalus•’s ˇabaqåt al-umam (written about 1068 in Spain). In 
praising Indian achievements in the sciences this author writes: wa-mimmå 
waßala ilaynå min >ul¥mihim f• l->adad ˙isåb al-ghubår alladh• bassa†ahu 
Ab¥ Ja>far Mu˙ammad ibn M¥så al-Khwårizm• etc.,24 “And among what has 
come down to us of their sciences of numbers is the ˙isåb al-ghubår [dust 
reckoning] which . . . al-Khwårizm• has described at length. It is the shortest 
[form of] calculation . . . , etc.” This paragraph was later reproduced by Ibn 
al-Qif†• in his Tår•kh al-˙ukamå< (probably written in the 1230s), but here the 
most interesting words of Íå>id’s text were shortened; in Ibn al-Qif†• it merely 
reads: wa-mimmå waßala ilaynå min >ul¥mihim ˙isåb al->adad alladh• . . . , 
“And among what has come down to us of their sciences is the ˙isåb al->adad 
[calculation of numbers] which al-Khwårizm• . . . etc.”25 

From these testimonies it is clear that in the Arabic West since the mid-
dle of the tenth century the system of Hindu reckoning as such was called “dust 
reckoning,” ˙isåb al-ghubår—certainly in reminiscence of what the eastern 
arithmetical texts mentioned about the use of the takht, the dust board. It will 
then further be clear that the terms ˙ur¥f al-ghubår or qalam al-ghubår (dust 
letters or symbols) for the nine signs of the numerals used in this system of cal-
culation basically described the written numerals as such, without specification 
of their Eastern or Western Arabic forms. This is corroborated by some known 
texts that put the ˙ur¥f al-ghubår, written numerals, in opposition to the num-
bers used in other reckoning systems that had no written symbols, such as finger 
reckoning and mental reckoning. In favor of this interpretation may be quoted 
some of the texts first produced by Woepcke. One supporting element here is 
what Woepcke derives from the Kashf al-asrår [or: al-astår] >an >ilm [or: wa∂>] 
al-ghubår of al-Qalaßåd• (in Muslim Spain, died 1486).26 Further, in Woepcke’s 
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translation of a treatise by Mu˙ammad Sib† al-Mårid•n• (muwaqqit in Cairo, 
died 1527), where the author cites words from the Kashf al-˙aqå<iq f• ˙isåb 
al-daraj wa-l-daqå<iq of the Cairene astronomer Shihåb al-D•n Ibn al-Majd• 
(died 1447), we read (of Ibn al-Majd•), “Cependant (Chehab Eddîn), . . . , s’est 
étendu dans l’ouvrage cité sur l’exposition de la méthode des (mathématici-
ens des temps) antérieurs, en fait du maftoûh et du gobâr.”27 Here the two sys-
tems, ˙isåb maft¥˙ (mental reckoning) and ˙isåb al-ghubår (Hindu reckoning, 
with written numerals), are clearly set apart. In another paper Woepcke gave the 
translation of a treatise Introduction au calcul gobârî et hawâï (without men-
tioning an author or the shelf-mark of the manuscript) where, again, the “cal-
cul gobârî ” (Hindu reckoning, with written numerals) is opposed to the “calcul 
hawâï ” (mental reckoning, i.e., without the use of written symbols).28 

From these testimonies it can be derived that the written numerals in the 
Hindu reckoning system were called al-˙ur¥f al-tis>a (the nine letters, or lit-
terae) or, in Mafåt•˙ al->ul¥m, al-ßuwar al-tis> (the nine figures) or ashkål al-
ghubår (dust figures, in Ibn al-Yåsam•n) and ˙ur¥f or qalam al-ghubår (dust 
letters) by other Western Arabic authors. The designation thus refers to the 
written numerals as such, as opposed to numbers in other reckoning systems 
that did not use written symbols. I should think that, therefore, it is no longer 
justified for us to call the Western Arabic forms of the Hindu-Arabic numer-
als “ghubår numerals.” Rather we should speak of the Eastern and the Western 
Arabic forms of the nine numerals. 

The second, most difficult, question in connection with the Arabic 
West concerns the forms of the written numerals in that area, their origin and 
their relationship with the “Arabic numerals” that came to be used in Latin 
Europe. 

Here one might ask why the Arabic West developed forms of the num-
erals different from those in the East. It is hard to imagine a reason for this 
development, especially when we assume—in conformity with our under-
standing of the birth and growth of the sciences in the Maghrib and al-Andalus 
in general—that the Hindu reckoning system came to the West like so many 
texts and so much knowledge from the Arabic East. About the mathematician 
and astronomer Maslama—in Spain, died 1007/1008—for example we learn 
from Íå>id al-Andalus•29 that he studied the Almagest, that he wrote an abbre-
viation of al-Battån•’s Z•j and that he revised al-Khwårizm•’s Z•j (this work has 
survived in a Latin translation by Adelard of Bath and has been edited); he also 
knew the Arabic version of Ptolemy’s Planisphaerium and wrote notes and 
additions to it that survive in Arabic and in several Latin translations.30 Thus 
he, or his disciples, will certainly also have known al-Khwårizm•’s Arithmetic 
and, together with it, the Eastern Arabic forms of the numerals. Not quite a cen-
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tury later Íå>id al-Andalus• knows of al-Khwårizm•’s Arithmetic under the title 
˙isåb al-ghubår, as we have just heard. 

Certainly, in this connection one has to consider that also some more 
elements of basic Arabic erudition took a development in the West different 
from that in the Arabic East: first, the script as such—we think of the so-called 
Maghrebi ductus in which, beyond the general difference in style, the letters 
få< and qåf have their points added differently; second, the sequence of the let-
ters in the ordinary alphabet; and, third, the sequence of the letters in the abjad 
series where the West deviates from the old Semitic sequence that was retained 
in the East and assigns to several letters different number values.31 As far as I 
can see, linguists have also not brought forward plausible arguments for these 
differences. 

That the Eastern Arabic numerals were also known in al-Andalus is dem-
onstrated by several Latin manuscripts that clearly show the Eastern forms, for 
example, MSS Dresden C 80 (2nd half 15th century), fols. 156v–157r; Berlin, 
fol. 307 (end of 12th century), fols. 6, 9, 10, and 28; Oxford, Bodleian Library, 
Selden sup. 26; Vatican, Palat. lat. 1393; and Munich, Clm 18927, fol. 1r, 
where the Eastern figures are called indice figure, whereas the Western forms 
are labeled toletane figure;32 the zeros are here called cifre. 

However that may be, the evidence for the Western Arabic numerals in 
Latin sources begins in 976; a manuscript—the “Codex Vigilanus”—written in 
that year and containing Isidor’s Etymologiae has an inserted addition on the 
genius of the Indians and their nine numerals, which are also written down in 
the Arabic way, that is, proceeding from right to left, in Western Arabic forms.33 
The same was repeated in another Isidor manuscript, the “Codex Emilianus,” 
written in 992.34 Hereafter follow, in Latin, the “apices,” the numeral nota-
tions on abacus counters, which render similar forms of the numerals.35 Here, 
the Western Arabic forms are still drawn in a very rough and clumsy man-
ner. A third impulse came in the twelfth century with the translation of al-
Khwårizm•’s Arithmetic; from now on the forms of the numerals become 
smoother and more elegant.36 

Unfortunately, the documentary evidence on the side of Western Arab-
ic numerals is extremely poor. So far, the oldest specimen of Western Arabic 
numerals that became known to me occurs in an anonymous treatise on auto-
matic water-wheels and similar devices in MS Florence, Or. 152, fols. 82r and 
86r (the latter number also appears on fol. 81v). Two other texts in this section 
of the manuscript are dated to 1265 and 1266, respectively (figures 1.3a–b).37 
Here we have the symbols for 1, 2, 3, 4, 5, 8, and 9. The figures for 2 and 3 
look like the corresponding Eastern Arabic forms and are not turned by 90º as 
in other, more recent, Maghrebi documents. The meaning of these numerals 
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in the present context remains unexplained to me. The numerals in two other 
Maghrebi manuscripts that fell into my hands (figures 1.4–1.5)38 resemble the 
forms found in the specimens reproduced in facsimile by Labarta—Barceló 
from Arabic documents in Aragon and Valencia from the 15th and 16th cen-
turies.39

While specimens of Western Arabic numerals from the early period—
the tenth to thirteenth centuries—are still not available, we know at least that 
Hindu reckoning (called ˙isåb al-ghubår) was known in the West from the 
tenth century onward: Dunas ibn Tam•m, 955/6; al-Dån•, before 1053; Íå>id 
al-Andalus•, 1068; Ibn al-Yåsam•n, 2nd half of the 12th century. It must be 
regarded as natural that, together with the reckoning system, also the nine 
numerals became known in the Arabic West. It therefore seems out of place 
to adopt other theories for the origin of the Western Arabic numerals. From 
among the various deviant theories I here mention only two. One theory, also 
repeated by Woepcke,40 maintains that the Arabs in the West received their 
numerals from the Europeans in Spain, who in turn had received them from 
Alexandria through the “Neopythagoreans” and Boethius; to Alexandria they 
had come from India. Since Folkerts’s edition of and research on the Pseudo-
Boethius41 we now know that the texts running under his name and carrying 
Arabic numerals date from the eleventh century. Thus the assumed way of 
transmission from Alexandria to Spain is impossible and this theory can no lon-
ger be taken as serious. Recently, Richard Lemay had brought forward another 
theory.42 He proposes that, in the series of the Western Arabic numerals, the 5, 

Figure 1.3a 
MS Florence, Or. 152, fol. 82r 
(dated 1265–1266)

Figure 1.3b 
MS Florence, Or. 152, fol. 86r 
(dated 1265–1266)
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6, and 8 are derived from Latin models, 5 as rendering the Visigothic form of 
the Roman v, 6 as a ligature of vi in the same style, and 8 as the o of octo with 
the final o placed above. This might appear acceptable for the Arabic numer-
als used in Latin texts. But since the Western Arabic numerals are of the same 
shape, that would mean that the Western Arabs broke up their series of nine 
numerals and replaced their 5, 6, and 8 by forms taken from European sources. 
This seems highly improbable. The Western Arabs received their numerals 
from the East as a closed, complete, system of nine signs, and it would only 
appear natural that they continued to use it in this complete form, not breaking 
the series up and replacing single elements by foreign letters. 

When one compares the Eastern and the Western Arabic forms of the 
numerals, one finds that they are not completely different. The Western forms 
of 1, 2, 3, 4, 5, and 9 can be recognized as being related to, or derived from, 
the corresponding Eastern forms. Major difficulty arises with 6, 7, and 8. It 
may not be accidental that the oldest existing Latin re-working made from 
the translation of al-Khwårizm•’s Arithmetic mentions just these three figures 
(plus 5) as being differently written.43 As I have already said earlier, this notice 
can hardly stem from al-Khwårizm• himself; rather it may have been added by 
a Spanish-Arabic redactor of al-Khwårizm•’s text. He would have been best 
equipped to recognize this difference. The Latin translator, or Latin adapters, 
would less probably have been able to notice the difference between the East-
ern and Western Arabic forms of these four numerals. We cannot explain why, 
and how, the three Western figures were formed, especially since we have no 

Figure 1.4 
Rabat, al-Khizåna al->Åmma, MS 321, p. 45 (after 1284)
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Figure 1.5
MS Ait Ayache, p. 192 (after 1344)
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written specimens of Western Arabic numerals before the thirteenth century. 
For further research into the matter, therefore, the discovery of older, or old, 
documents remains a most urgent desideratum. 

Lastly, I want to mention a curious piece of evidence. Somebody in the 
Arabic West once found out that the Western Arabic forms of the nine num-
erals resemble certain letters in the Maghrebi script and he organized their 
description in a poem of three memorial verses (in the metre kåmil). The poem 
is reported by the Spanish-Arabic mathematician al-Qalaßåd• (died 1486) in 
a commentary on the Talkh•ß f• >amal al-˙isåb of Ibn al-Bannå< (died 1321 or 
1324) and, afterwards, by Óusayn ibn Mu˙ammad al-Ma˙all• al-Shåfi>• (died 
1756, an Eastern Arabic author) in a commentary on an arithmetical work of 
al-Sakhåw• (died after 1592, also an Eastern author). The two loci are cited by 
Woepcke.44 The text of the poem is as follows: 

alifun wa-yå<un thumma ˙ijjun [wa-] ba>dahu 

>awwun wa-ba>da l->awwi >aynun tursamu

hå<un wa-ba>da l-hå<i shaklun Ωåhirun 

yabd¥ ka-l-khu††åfi idhå huwa yursamu 

ßifråni thåminuhå wa-alifun baynah[um]å  

wa-l-wåwu tåsi>uhå bi-dhålika yukhtamu 

That is, 1 is compared to an alif, 2 to a final yå< (but to ˙å< in al-Ma˙all•; 
both comparisons are possible), 3 to the combination ̇ å<-j•m, 4 to the combina-
tion >ayn-wåw, 5 to >ayn, 6 to (an isolated) hå<, 7 to a khu††åf (i.e., an iron hook), 
8 to two zeros above each other and linked by a stroke, and 9 to a wåw. These 
memorial verses may be much older than al-Qalaßåd•’s time. They seem to have 
become a topic since they are cited even by an Eastern Arabic author. Perhaps 
one can conclude from this standardized description that the written forms of 
the Western Arabic numerals were less variable than the Eastern ones. 

To sum up, we can register that the history of the transmission of the 
Hindu numerals and Hindu reckoning to the Arabs in the East appears to be 
clear. For the Arabic West it is known that all the cultural and scientific achieve-
ments of the East were transferred there. In the stream of this cultural move-
ment the knowledge of Hindu reckoning and the nine numerals must also have 
passed there. The oldest known testimony for the acquaintance with the Hindu 
system is documented for 955/6 in Kairouan. So far no written evidence of 
Western Arabic numerals for the tenth to the thirteenth centuries have been 
found; documents are only known from the thirteenth century on. But these 
numerals must have existed earlier since the first evidence in Latin sources—
which took up these numerals from the Arabs in Spain—dates from 976. The 



Paul Kunitzsch 16 The Transmission of Hindu-Arabic Numerals Reconsidered 17

most important task for further research would therefore be to find older West-
ern Arabic material for the knowledge and use of the Hindu numerals in that 
region.

Appendix

An inspection of microfilms of the manuscripts of Leonardo of Pisa’s Liber abaci 
(AD 1202) shows that a group of older manuscripts has numerals similar in shape to 
those in the New York MS of al-Khwårizm•’s Arithmetic as visible in the facsimiles 
of its recent edition (Folkerts 1997): MSS Florence, BN, Conv. Sopp. C.1.2616 
(beg. 14c.? Here the series of the nine symbols, at the beginning of the text, looks 
different, more “modern”; but in the text itself and in the diagrams and tables etc., 
they are of the Khwårizm•-MS N-type. This manuscript was used by Boncompagni 
for his edition, 1857–1862); Siena, Bibl. Publ. Comm., L.IV.20 (2nd half 13c.); 
Florence, Magliabecchi XI, 21.

On the other hand, more recent, “modern(ized),” forms of the numerals are 
used in MSS Florence, BN II.III.25 (16c.); Vat. Palat. 1343 (end 13c.?); Milan, I. 
72 (15c.?). It thus appears evident that the numerals in the Leonardo manuscripts 
follow the forms current in the known Latin arithmetical texts. Contrary to what is 
sometimes assumed, they do not show the intrusion of new Arabic influence result-
ing fro Leonardo’s oriental travels and his personal contacts with trade centers in 
the Arab world. 

Postscript

For the Maghribi manuscript Ait Ayache, Óamzaw•ya 80, quoted in this article, it is 
now established that it was copied shortly after AD 1600; see the detailed descrip-
tion by Ahmad Alkuwaifi and Monica Rius, “Descripción del Ms. 80 de Al-Zåwiya 
al-Óamzaw•ya,” Al-Qan†ara 19 (1998), 445–463. Therefore the manuscript can no 
longer serve as a testimony to early forms of Western Arabic numerals.

Notes 

1. See Nau. 

2. Sezgin V, 211. 

3. See al-B•r¥n•, India, ch. 14, apud Woepcke 1863, 475f. (note 1), sub 13º, 19º and 24º 
(= repr. II, 407f.). 

4. Al-Uql•dis•: Saidan 1973 and 1978; K¥shyår: Levey-Petruck; al-Baghdåd•: Saidan 
1985. 

5. About fifteen such titles up to the middle of the eleventh century are quoted by Sez-
gin, V. 
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6. Al-Ya>q¥b• I, 93; cf. Köbert 1975, 111. 

7. Al-Mas>¥d• I, p. 85 (§152). 

8. Al-Khwårizm•, 193–195. 

9. Fischer, 783–793. 

10. Fihrist, I, 18f.; cf. Köbert 1978. 

11. Fischer, 792; Köbert 1975, 111. 

12. Pellat, 466b. 

13. Grohmann, 453f., no. 12, and Plate LXV, 12. 

14. Prof. W. Diem, Cologne, who has studied and edited such papyri for many years, 
informs me (in a letter dated 6 August 1996) that the understanding of the symbols as 
a year number is not free from doubt, because an expression like f• sanat (“in the year 
. . .”), which is usually added to such datings, is here missing. Furthermore, he con-
firmed that a second dating of that type in another papyrus, understood by Karabaçek, 
13 (no. 8), as the Hindu numerals 275 (888/9), is not formed by Hindu numerals, but 
rather by (cursive) Greek numeral letters. This document, therefore, must no longer 
be regarded as the second oldest occurrence of Hindu-Arabic numerals in an Arabic 
document.

15. See the quotation by Woepcke 1863, 275f. (= repr. II, 358f.). 

16. Translated by Woepcke 1863, 496 (= repr. II, 428). 

17. Saidan 1985, 33. 

18. Cf. on this also Woepcke 1863, 482f. (= repr. II, 414f.). 

19. Gandz 1927 and 1931. 

20. It is in §2 of the treatise. I owe this information to Richard Lorch. Dr. Lorch is pre-
paring an edition of al-Sijz•’s text. 

21. Woepcke 1859, 27, note *** (= repr. II, 191). 

22. First cited by Joseph Reinaud in an Addition to his “Mémoire sur l’Inde,” 565, from 
one of the four Hebrew translations that were made from Dunas’s original Arabic text, 
which itself has survived only in part. 

23. Ibn al-Yåsam•n, 232f.; a German translation was given by Köbert 1975, 109–111. 

24. Íå>id al-Andalus•, 58. 

25. Ibn al-Qif†•, 266, ult.—267,3. 

26. Woepcke 1854, 359, sub 3º (= repr. I, 456). 

27. Woepcke 1859, 67 (= repr. II, 231). 

28. Woepcke 1865–66, 365 (= repr. II, 541). 
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29. Íå>id al-Andalus•, 169. 

30. Edited by Kunitzsch-Lorch.

31. Cf. Grundriss, 176ff., 181f., 182f. 

32. For Selden and Pal. lat., cf. the table in Allard, 252; for Clm 18927, cf. Lemay 1977, 
figure 1a. 

33. See the reproduction in van der Waerden-Folkerts, 54. 

34. Reproduced also in van der Waerden-Folkerts, 55. 

35. For reproductions, see, inter alios, van der Waerden-Folkerts, 58; Tropfke, 67; Folk-
erts 1970, plates 1–21. 

36. See the photographs in Folkerts 1997, plate 1. etc., from the newly found and so 
far oldest known manuscript of a re-working of the Latin translation of al-Khwårizm•’s 
Arithmetic. 

37. I owe the knowledge of this manuscript to the kind help of Dr. S. Brentjes, Berlin, 
which is gratefully acknowledged. A detailed description of the manuscript was given 
by Sabra 1977. 

38. Rabat, al-Khizåna al->Åmma, MS 321, p. 45. The preceding text, ending on p. 44, 
is dated in the colophon to 683/1284. P. 45 was left blank by the original writer; a later 
hand added in the upper part an alchemical prescription and at the bottom a magic 
square with directions for its use. I am grateful to Prof. R. Degen, Munich, for bring-
ing this page to my attention, and to Prof. B. A. Alaoui, Fes, and M. A. Essaouri, Rabat, 
for procuring copies of the relevant pages from the manuscript.—Morocco, Ait Ayache, 
MS Óamzaw•ya 80. On p. 201 of the manuscript, in an excerpt from the Z•j of Ibn 
>Azz¥z al-Qusan†•n•, there is a calculated example for July–August 1344 (cf. Kunitzsch 
1994, p. 161; 1997, p. 180). 

39. It should be added that in the table of ghubår numerals given by Souissi, 468, the 
numerals in the first two lines (said to date from the 10th century and ca. 950, respec-
tively) are not (Arabic) ghubår numerals, but rather Indian numerals (cf. Sánchez Pérez, 
the table on p. 76, lines 8–9). It should also be noted that the date given by Sánchez 
Pérez, 121, table 1, for the specimen in line 9 (“Año 1020”) is the Hijra year (= AD 
1611/12); the author there mentioned, Ibn al-Qå∂•, died in Fes 1025/1616. Similarly, 
the specimen in line 12, ibid., from MS Escorial 1952, must belong to the 11th century 
Hijra; the manuscript contains a commentary by Abu ’l->Abbås ibn Íafwån on the sum-
mary of Målik ibn Anas’ al-Muwa††a< of Abu ’l-Qåsim al-Qurash•.

40. Woepcke 1863, 239 (= repr. II, 322). 

41. Folkerts 1968, 1970. 

42. Lemay 1977 and 1982. 

43. Folkerts 1997, 28: MS N, lines 34–38. 

44. Woepcke 1863, 60f. and 64f. (= repr. II, 297f. and 301f.). 
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This chapter considers a group of Latin astronomical texts translated from Ara-
bic, or based on Arabic material, which share the same technical language and 
have the same systems of numeration, and explores the possibility that, unlike 
the majority of Arabic scientific works, which entered Europe from Spain, 
these came directly from the East and were brought to the West by scholars 
working in Antioch and Pisa. The texts under consideration here are a transla-
tion of Ptolemy’s Almagest, known as the “Dresden Almagest,” a Latin cosmol-
ogy describing the Ptolemaic system, called the Liber Mamonis, and a version 
of the astronomical tables of al-Í¥f•. All these texts appear to have been written 
in the second quarter of the twelfth century.

I  The Dresden ALMAGEST and LIBER MAMONIS

It was Charles Homer Haskins, whose intuitions usually prove remarkably 
accurate, who first pointed out a feature which could link the Latin version of 
the Almagest surviving uniquely in MS Dresden, Landesbibliothek, Db. 87, 
and the Liber Mamonis, a cosmology of which the only known copy is the 
incomplete text in the twelfth-century MS Cambrai, Bibliothèque municipale, 
930.1 The first section of this article confirms the link between the two works, 
and suggests that the Dresden Almagest represents the first attempt to translate 
the Almagest into Latin in the Middle Ages, whilst the Liber Mamonis, in turn, 
is an early attempt at replacing a cosmology based on Latin sources with the 
Ptolemaic system.2

MS Dresden, Db. 87 was written in ca. 1300;3 it once belonged to Ber-
thold of Moosberg, and became the property of the Dominicans of Cologne. 
It consists of several texts related to Ptolemy’s Almagest: Geminus of Rhodes’s 
Introduction to the Phenomena (often called “Introductio Ptolemei in Alma-
gestum”), the Parvum Almagestum, and Jåbir ibn Afla˙’s Correction of the 
Almagest. The first item, however, is a unique copy of a translation of the first 
four books of Ptolemy’s Almagest. It was first brought to the notice of schol-
ars by J. L. Heiberg, who quoted the incipits and explicits of the four books.4 
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Haskins, in turn, transcribed the list of titles for the first book and the prologue. 
Both scholars considered that the translation was made from Greek, on the 
grounds of its vocabulary. However, the Arabic name that appears in the explic-
its to each book already makes one uneasy about a Greek origin: for example, 
“Here ends the first book of the mathematical treatise of Ptolemy which is 
called the Megali Xintaxis of astronomy, in the translation <and> dictation by 
the love of languages (?) of ‘Wittomensis Ebdelmessie.’”5

The interpretation of the name, and the precise role of this “>Abd al-
Mas•˙ of Winchester” is unclear. But a comparison of the text with the Greek 
and Arabic versions of the Almagest reveals clearly that an Arabic text lies at 
the base of this version:6

1. The word order and terminology of the first phrase corresponds to the Is˙åq/
Thåbit version of the Arabic Almagest.7

2. Most of the diagrams are reversed in respect to the Greek; this may have arisen 
out of a mistaken notion of a translator from Arabic that, since he had to reverse the 
direction of the script, he also had to reverse the diagrams.

3. The terminology is based on Arabic rather than Greek.8

4. Several turns of phrase are reminiscent of other translations from Arabic.9 

Heiberg and Haskins were misled by the translator’s total avoidance of 
transcriptions from Arabic, and by his addition of a veneer of Greek or Pseudo-
Greek terms. That this is a veneer is immediately obvious when one looks for 
these Greek terms in the Greek text of the Almagest; for in most cases they 
are simply not there. Where the Dresden Almagest has ‘praxis’ (fol.1r), the 
Greek text has ‘praktikovn’ (Heiberg, 4.9), where it has ‘phisialoica’ (fol.1r), 
the Greek has ‘fusikovn’ (Heiberg, 5.9), where it has ‘organum’ (fol. 3r), the 
Greek has ‘kataskeuavı’ (Heiberg, 13.12), and so on. To the category of a 
Greek veneer may also be ascribed the word occurring in the explicits of each 
book: ‘philophonia’ (‘love of languages’?), which is meant, no doubt, to sound 
stylish, but makes little sense. Nevertheless, it is possible that the translator 
attempted to look at a Greek manuscript, or at least consulted someone who 
knew Greek. Otherwise it is difficult to explain how he came to use the nonce-
word ‘aretius’ where the Greek text has ‘ajretw`n.’10 Moreover, he transcribed 
quite accurately Greek proper names, and the names of Egyptian months,11 
as well as the Greek title of Ptolemy’s work: ‘megali xintaxis’ (i.e., megavlh 
xuvntaxiı). It is clear that the translator wished to give the impression that he 
had taken the whole text from the Greek. 

Whether the translation is literal can only be ascertained through a close 
comparison with the extant Arabic versions of the Almagest, which (except for 
the star-tables of Books 7 and 8) are not yet edited. When one compares the 
text with the Greek Almagest one finds that 
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1. Although there are references to tables,12 none of Ptolemy’s tables has been 
copied into the manuscript. It is difficult to tell whether they were originally 
included.13 

2. In the theorems on trigonometry and spherical astronomy in Books 1 and 2, ref-
erences to the relevant theorems in Euclid’s Elements have been added. That this is 
an addition in the original Arabic text is suggested by the presence of exactly the 
same forms of reference to the Elements in the text of al-Nasaw• (see item 6 below). 
But it is worth noting that here again the translator refers to Euclid’s work either 
with a transcription of the Greek title—e.g., ‘liber estichie (= stoicei`a) euclitis,’ 
fol. 7v—or a literal translation of that title: ‘liber elementorum euclithis’ (fol. 6v),14 
and not as ‘liber geometrie’/‘liber institutionis artis geometrie’ vel sim. which is 
found in most of the translations of the Elements made from Arabic. 

3. Of similar status are the cross-references to other theorems in the Almagest: e.g., 
fol. 17r (Almagest, II.3): ‘demonstracione .xiiii. figure primi sermonis huius libri’; 
this cross-reference is not in Ptolemy’s text, but such cross-references also occur 
in al-Nasaw•’s work.

4. Sometimes only the geometrical elements of a theorem are given, and the numeri-
cal values have been omitted; e.g., in Book II, chapters 2 and 3.

5. Sometimes a more precise value replaces Ptolemy’s ‘rounded’ value: e.g., fol. 
15r: ‘11; 39, 59˚’ where Ptolemy has ‘approximately 11; 40˚’ (I, 14, Heiberg, 
78.12).

6. The only substantial addition vis-à-vis the Greek text is that of several theorems 

on the sector-figure appended to the end of Almagest, I, chapter 13 (Dresden MS, 

fols 13v–14v). As has been pointed out by Richard Lorch, this passage corresponds 

to a section of chapter 2 of al-Ishbå> f• shar˙ al-shakl al-qa††å> by the eleventh-

century Arabic mathematician, al-Nasaw•, who served the B¥yid am•rs in Bagh-

dad.15 The verbal equivalence between the Dresden Almagest and this passage of 

al-Nasaw• suggests that the translator was translating literally from an Arabic 
text.16 

On the whole, aside from the tables, little appears to be missing in the 
first four books of the Almagest.17 There is nothing, either, to indicate that the 
translation stopped after the fourth book, rather than that the scribe of the Dres-
den manuscript decided at this point not to copy any more of the translation.

There are two characteristic features which separate this translation from 
other Latin translations of the Almagest (whether from the Arabic or from the 
Greek): the terminology, and the notation for numerals. It was the notation for 
numerals that attracted the attention of Haskins, and this needs more careful 
analysis.

The translator18 began by using roman numerals only. Then, on fol. 15v 
(in Almagest, I, chapter 16), he makes his first attempt to use alphanumeri-
cal notation. That alphanumerical notation is being introduced at this point is 
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indicated by the fact that here, and here only, the numerical values of the letters 
of the alphabetic are spelt out:

quinquaginta f sex partium et unius a sexagenarie et viginti e quinque 
secund-arium ad centum t et viginti k partes (‘<the ratio of> fifty f (six) 
degrees and a (one) minute and twenty e (five) seconds to t (one hundred) 
and k (twenty)19 degrees’)

Thereafter, alphanumerical notation is used, sometimes on its own, 
sometimes in combination with roman numerals, and sometimes alternating 
with them. One can construct the following key for the numerical values of 
the letters:

1  a 10  k 100  t 1000  a mille
2  b 20  (l) 200  u 2000  b milia
3  c 30  (m) 300  x 3000  c milia
4  d 40  (n) 400  y 4000  d milia
5  e 50  (o) 500  z etc.
6  f 60  (p) 600  Q
7  g 70  (q) 700  F
8  h 80  (r) 800  .n.20

9  i 90  (s) 900  [Q]21

On the whole, in comparison with the Greek text, the numbers in the 
Dresden Almagest are accurate, whether they are written in roman numerals or 
alphanumerical notation. There is, however, one fundamental flaw in this copy, 
namely that, for some reason or other, the scribe completely omits any digit in 
the 10s or 10000s unless it is followed by a ‘0’, in which case it is invariably 
written as ‘k’ Thus:

10  k 20  k 30  k 40  k 50  k etc.
11  a 21  a 31  a 41  a 51  a etc.
12  b 22  b 32  b 42  b 52  b etc.
13  c 23  c 33  c 43  c 53  c etc.

etc.

10000   k milia 20000   k milia etc.
11000   a milia 21000   a milia etc.

Thus, the only numbers which are correctly written in the 10s and 10000s 
are 10 and 10000 themselves. As examples one may take the following:

fol. 54r: c partes et k sex. et d secunde et h tercie = 13;10,34,58˚
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fol. 66r: i dies et b dies et k recte hore = 122 days and 10 hours
fol. 64v: x milia et a milia et F et c dies = 311,783 days (see figure 1)

That the 10s (and consequently the 10000s) were originally represented 
is clear from the fact that the missing letters of the alphabet, ‘l’ to ‘s’ (placed 
in round brackets in the table above), exactly fit between 10 (= k) and 100 
(= t). We must also presume that, given the accuracy of the numbers when they 
are written in roman numerals, the original translator also used the alphanu-
merical notation in an accurate way. The parallel examples of Greek and Arabic 
alphanumerical notation illustrate how the letters, used in their Semitic order, 
progressively represent the units, 10s and 100s, and these are the parallels 
the translator of the Dresden Almagest would have been following. It seems, 
however, that, in one respect, his system differed from the normal Greek and 
Arabic systems: he appears to have added “k” when a 10 or 10000 was not fol-
lowed by a unit, giving something like:

10  k 20  lk 30  mk 40  nk 50  ok etc.
11  ka 21  la 31  ma 41  na 51  oa etc
12  kb 22  lb 32  mb 42  nb 52  ob etc.

In each case (excepting always “10”) the first letter was dropped at some 
time in the copying process, perhaps because it was originally written (or 
intended to be written) in rubric, and the rubrics were not filled in.22

When one turns to the Liber Mamonis one finds a very similar alpha-
numerical system, but this time, the expected letters for the 10s are used:

1  a 10  k 100  t
2  b 20  l 200  u
3  c 30  m 300  x
4  d 40  n 
5  e 50  o 
6  f 60  p 
7  g 70  q 
8  h 80  r
9  i 90  s

In the Liber Mamonis the author has no occasion to use any number 
between 360 and 1000. Therefore, it is impossible to know what symbols he 
would have used for the 100s between 400 and 900. Moreover, he uses “k” only 
for ‘10’ and not in combination with the letters for 20 to 90. 

For the thousands and above, the author of the Liber Mamonis usually 
writes out the numbers in a way which is also found in the Dresden Almagest:
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Figure 2.1 
Dresden, Landesbibliothek, Db. 87, fol. 64v. A passage from the translation of 
Ptolemy’s Almagest, Book IV, ch .7, showing the use of alphanumerical notation. 
In lines 13–14 the number 311,783 is written as ‘x milia et a milia et F et c.’ 
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Liber Mamonis, fol. 27v: mille septingenti .l.h. [= 1728].

Dresden Almagest, fol. 51r: quatuor milia et z et c [= 4573]

However, on two folios (27v–28r), he experiments with using a differ-
ent system of numerals for high numbers, namely Hindu-Arabic numerals. He 
is writing at a time when Hindu-Arabic numerals were only just beginning to 
be used by Latin scholars, and it is significant that he (or perhaps, rather, the 
scribe) assimilates their shapes to Latin letters.23 Moreover, he uses the Eastern 
forms of the numerals, as can be seen from the following table:

 Eastern forms

1 = ı or t

2 = p

3 = Y

4 = (possibly the abbreviation of ‘quia’)        

5 = g

6 = 7 (the tyronian ‘et’)

7 = u

8 = a or ∂

9 = q

This active use of the Eastern forms of the Hindu-Arabic numerals is 
quite remarkable. The numerals in current use in Western scripts nowadays, 
which are usually referred to as “Arabic,” were known in Castile by the late 
tenth century,24 and appear to have become the standard system used by trans-
lators and scholars working in Toledo in the later twelfth century: one variant 
of these Western forms is described specifically as figure toletane (“Tole-
dan symbols”).25 The Eastern forms of the Hindu-Arabic numerals, on the 
other hand, are closer to the original Sanskrit shapes, and developed into the 
numeral forms used nowadays in Arabic. They are called figure indice (‘Indian 
symbols’) in the same Latin manuscript that called the Western forms figure 
toletane.26 The Eastern forms are found only in copies of a small number of 
interrelated Latin works, as will be discussed later.

It would be attractive to think that the author of the Liber Mamonis was 
influenced by the example of the Dresden Almagest and refined the alpha-
numerical notation he found there, whilst also experimenting with using Hindu-
Arabic numerals for the higher numbers. If the similarity between the two texts 
stopped here, then this would remain only a weak hypothesis. However, of even 
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greater significance is the fact that the majority of the astronomical terms in the 
Liber Mamonis are the same as those of the Dresden Almagest.27 Much of this 
terminology is unique to these two works and quite remarkable; e.g., the use of 
the terms ‘sexagenaria’ for ‘minute,’28 ‘synodos’ for ‘conjunction,’ and ‘(circu-
lus) rotunditatis’ for epicycle. The two works must, therefore, be related.

The question arises, however, as to whether the author of the Liber 
Mamonis was using the contents as well as the terminology of the Dresden 
Almagest. He refers to Ptolemy’s work or its author on several occasions:

1. “Ptolemy and the other <authorities> who are more sensible in their thinking 
<concerning climes> . . . .”29

2. “We know from the discovery of the best men in astronomy—Ptolemy and the 
others—that this parallax is greater in <the case of> Mercury than in Venus, and 
that Venus has a greater <parallax> than the Sun.”30

3. “These two <equinoctial> points are fixed and do not move, according to what 
Ptolemy stated in the Syntaxis. However, the opinion of others who came after 
<Ptolemy> and who took it upon themselves to investigate this and other things 
more intimately, is that they move eastwards with a slow motion—namely one 
degree every 106 years. In this matter it is amazing that the intelligence of Ptolemy 
was deceived. For they do move. But what caused him to stumble has been proved 
to be a certain astronomer who preceded him, who made a false observation when 
seeking the position of the height of the Sun. For he had said that the apogee of 
the Sun was in the same place in his time as Ptolemy, who dealt with and investi-
gated all the secrets of the stars more perspicaciously, correctly discovered it was 
in, in his own time. Hence Ptolemy is said to have been led into error, although he 
said nothing more than that <the point> was not moving. He made no mistake at all 
in finding the place; rather, his predecessor made a mistake. Therefore, no doubts 
should be cast on the accuracy of Ptolemy, but one should blame the ignorance of 
the man who, by committing to writing something that he did not know, made a 
wise man stumble. Now that we have said enough in support of <Ptolemy’s> dili-
gence, let us return to the subject.”31

4. “The movement by which this sphere moves and carries the other <spheres> 
with it is a slow one from west to east, completing—as Ptolemy said in his Megale 
Syntasis—the path of one degree in the period of 100 years; or 106 years in the 
opinion of others.”32

5. “The spheres of the three planets, Saturn, Jupiter and Mars, are very similar to 
each other in the number and divisions of their spheres, their movement and their 
circles, as Ptolemy is proved to have said in his Syntaxis.”33

6. “The measurement of the maximum latitude of the planets and the Moon to 
the north and the south of the zodiac is: Moon: 4° 45´ (when the Great Circle is 
divided into 360°); Saturn 3°; Jupiter 2°; Mars, 4° 20´ to the north, 7° to the south; 
Venus, as Ptolemy says in his Syntaxis, 6° 2´, but, as other astronomers have said, 
9°; Mercury 4°.”34
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7. “This lowest sphere of Saturn moves eastwards round two fixed poles with a 
slow motion which is one degree in 100 years. These are the two poles of the zodiac 
which the centre of the Sun circles, according to what Ptolemy says has been dis-
covered by himself and his predecessors.”35

The author of the Liber Mamonis gives the impression (or would like to 
give the impression) that he knows the Almagest directly, and there are certain 
passages which follow the Almagest closely in their argumentation and/or in 
the values that they give:

1. The sequence of the argument for working out the relative distances of the plan-
ets from parallax on fol. 27v (item 2 above) corresponds to that in Almagest, IX, 
chapter 1.

2. The description of finding the solar anomaly on fol. 31v corresponds to 
Almagest, III, chapters 5–6.

3. The limits of the movement in latitude quoted in item 6 above are rounded-off 
figures from Almagest, XIII, 5.

If we are to suppose, on the basis of this evidence, that the author of the 
Liber Mamonis knew the Almagest directly, then we have to conclude that he 
was familiar as much with the later books as with the first four books which 
alone are found in the Dresden Almagest. 

However, the Almagest is not the principal model for the Liber Mamo-
nis, nor, perhaps, is it the principal source for the numerical values given in 
the Latin work. For the Liber Mamonis is a cosmology (in the Arabic hay <a 
tradition),36 not a mathematical work, and in some respects, the work is closer 
to Ptolemy’s Planetary Hypotheses (e.g., in talking in terms of contingent 
spheres on fols. 28v–29r). Moreover, the author refers specifically (though not 
by name) to Ptolemy’s successors and to astronomers who have criticized or 
corrected Ptolemy. One of these astronomers is, presumably, the unnamed Arab 
whom he describes, in the preface to the fourth book, as being his principal 
guide throughout the work:

But since in other <books> we followed for the most part a certain Arab, in 
this also we will follow <him> through much, although we have found cer-
tain things concerning the number of the spheres and their epicycles, and he 
has touched upon the truths about the circles and the obliquities of the plan-
ets with which the number of spheres is dissonant.37

It is presumably from these successors of Ptolemy that he gets the values 
which differ from those in the Almagest, such as 23˚ 35´ for the obliquity of the 
ecliptic (fol. 29r; Ptolemy’s value is 23˚ 51´20´´), and a precession of 106 years 
per degree.38 Also, not in the Almagest is his list of values for the “completion 
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Figure 2.2 
Cambrai, Bibliothèque municipale, 930, fol. 27v–28r, showing both the alpha-
numerical notation and the Eastern forms of the Hindu-Arabic numerals.
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of movement in latitude” (“Completur enim Saturni lati motus . . .”) of each of 
the planets on fol. 48v:

Saturn: 29 years, e.d. (5.4. ?) days, 15 hours, 24 minutes.

Jupiter: 11 years, 315 days, 14 hours, 29 minutes.

Mars: 1 year, 322 days, 24 hours.

Venus and Mercury: 1 year, 5 hours, 49 minutes.

There do not appear to be any direct quotations from the Almagest. 
A clue to the direct source of the Liber Mamonis may be hidden in its 

title itself. For it is tempting to see in the “Mamon,” implied by the Latin geni-
tive “Mamonis,” a reference to the caliph al-Ma<m¥n (ruled 813–833 A.D.), on 
whose command the earliest Arabic translations of the Almagest were made. It 
is unlikely that the Liber Mamonis is an allusion to the Almagest itself. How-
ever, it is possible that “the book of al-Ma<m¥n” is, rather, the correction of 
the Almagest, commissioned by the same al-Ma<m¥n, and resulting in al-z•j 
al-mumta˙an (referred to as the tabule probationum or tabule probate in Latin 
translations). These astronomical tables were specifically associated with the 
name of al-Ma<m¥n, and at least one of the values that the Liber Mamonis gives 
corresponds to a value attributed to al-Ma<m¥n’s ‘correctors,’ over against Ptol-
emy’s value: i.e., 23˚ 35´ for the value of the obliquity of the ecliptic. One may 
compare the relevant passage of the Liber Mamonis with the reference to al-
Ma<m¥n’s correction in John of Seville’s translation of al-Farghån•’s Rudimenta, 
c. 5 (translated in ‘Limia’ on March 11, 1135):

Liber Mamonis: “The movement of this sphere of the spherical circling (i.e., 
the ecliptic) is from the west to the east over two fixed poles and a fixed 
radius to the poles. These poles are neither the radius of the universe nor the 
radius (?), but each of them is distant from the pole of the universe closest to 
it by 23 degrees and 35 minutes.”39

Al-Farghån•: “<The obliquity of the ecliptic> is, according to what 
Ptolemy discovered, 23˚ 51´ (when the circle is 360˚), but, from the most 
accurate proof by which Almemon proved it, and with the agreement of the 
majority of wise men, it is 23˚ 35´.”40

If the Liber Mamonis gives the value of al-Ma<m¥n’s ‘correctors’ for 
the obliquity of the ecliptic without comment, it is possible that the other val-
ues that he gives and approves are from the same source. This remains to be 
checked. However, the title given in the Cambrai manuscript is not simply 
“Liber Mamonis,” but rather “Liber Mamonis in astronomia a Stephano phi-
losopho translatus.” This would imply that a certain philosopher called “Ste-
phen” translated a work associated with al-Ma<m¥n from Arabic into Latin. Yet 
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the Liber Mamonis is not a translation, but rather a treatise written in a liter-
ary style, which has as its leitmotif a criticism of the current doctrines in Latin 
cosmology, epitomized in the theories of Macrobius, and the need for their 
replacement by the Ptolemaic system. The word ‘translatus’ in the title, then, 
would mean not ‘translated’ (especially since no source or target language is 
mentioned) but rather ‘transmitted’, a meaning supported by classical usage, 
and, more important, in another work by “Stephen the Philosopher.”41 For, there 
is little doubt that the “Stephanus philosophus” of the Liber Mamonis is the 
“Stephanus philosophie discipulus” who translated the comprehensive medical 
work, al-kitåb al-malak• (Regalis dispositio) of >Al• ibn al->Abbås al-Maj¥s•. 

The reasons for this identification have been explained in detail else-
where,42 but can be summarized here. We find the same style of literary Latin, 
including whole phrases, in both works; we find consultation of Greek as well 
as Arabic sources; but, above all, we find the same system of alpha-numerical 
notation. Moreover, we find a place and a date, or rather, several dates, attached 
to different books of the translation of the Regalis dispositio. The place is 
Antioch, and the dates all fall within the year 1127. This makes it very likely 
that Stephen the Philosopher is “Stephanus thesaurarius Antiochie” for whom 
a copy of the Rhetorica ad Herennium (now MS Milan, Ambrosiana, Cod. E. 
7 sup.) was written in 1121.43 For, this manuscript also uses the alphanumeri-
cal notation in the same way as in the Liber Mamonis. Richard Hunt pointed 
out that there was a treasurer called Stephen at the Benedictine monastery of St 
Paul, one of the principal religious foundations in Antioch, who had been given 
a house in the city between 1126 and 1130.44 This is probably our “Stephen.” 
Further biographical details are given by the medical writer, Matheus Ferrar-
ius, who states that “Stephen, a certain Pisan, went to those parts (meaning 
the Orient?), and, learning that language, translated the whole of the Practica 
(i.e., the practical portion of the Regalis dispositio),”45 and from an unknown 
twelfth-century supporter of the medical school of Montpellier who calls Ste-
phen the “nephew of the Patriarch of Antioch.”46 

The correspondence in language and the form of the alphanumerical 
notation in the Liber Mamonis, the Regalis dispositio and the Milan copy of the 
Rhetorica ad Herennium (alphanumerical notation only) corroborates that the 
“Stephen” mentioned in all three works is the same man, and we can be reason-
ably sure that he was working in Antioch in the 1120s. He had a strong interest 
and competence in astronomy; he translated from Arabic, but also had some 
knowledge of Greek; he had the help of Arabic-speaking colleagues. The Dres-
den Almagest is a little different from these three works: the name Stephen is 
not attached to it; all Arabic transliterations are avoided whereas, in the Rega-
lis dispositio at least, Stephen deliberately transcribes the Arabic terms when 
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he does not know the Latin equivalent; the alphanumerical notation is not as 
advanced, and no Hindu-Arabic numerals are used. Nevertheless, the similari-
ties between the Dresden Almagest and the Liber Mamonis are such that the 
work must, at least, have arisen in the same milieu, if it was not directly used 
by Stephen the Philosopher.47 That milieu could have been Pisa, which was not 
only an important centre for Greek-Latin translations, but also had close links 
with the Arabic world through its quarters in Antioch, Laodicea, Acre, and 
elsewhere.48 But it was more likely Antioch itself, where Stephen was actively 
engaged in translating works from Arabic. 

One last clue associating the Dresden Almagest and the Liber Mamo-
nis must be taken into account. At the beginning of the Liber Mamonis the 
author states: “Since we have fulfilled our promise, having written a treatise on 
the rules we had proposed for the canon of astronomy, I approach this second 
task. . . .”49 He has, then, already written rules for astronomical tables. These 
he appears to refer to in the body of the Liber Mamonis,50 and he makes fre-
quent references to the tables themselves.51 Altogether, four tables are men-
tioned, which are to be used in succession for ascertaining the position in 
longitude of the planets; a further table is used for their latitudes. These tables 
and their rules have not been identified,52 but the late thirteenth-century astro-
nomer, Henry Bate, in listing a number of authorities that agree in measuring 
the movements of the planets in respect to the “ninth sphere,” mentions among 
the tables written by the followers of the magistri probationum, ‘tabule pisane 
wintonienses’ (‘the tables of Pisa <and> Winchester).53 It is true that one of 
the sets of instructions for using the tables of Pisa mentions the longitude of 
Winchester.54 But it is intriguing that this title should nicely join the names of 
Stephen (of Pisa and Antioch), the author of the Liber Mamonis and >Abd al-
Mas•˙ of Winchester, the translator of the Dresden Almagest.55 

II Astronomical Tables Connected with Pisa and Lucca

There is a very strong reason to connect the Tables of Pisa and the Liber 
Mamonis: namely, that the earliest copy of the Tables and the instructions for 
their use—Berlin, Staatsbibliothek, lat.fol. 307 (Rose, no. 956)—are written 
entirely in the Eastern forms of the Hindu-Arabic numerals. The Tables of Pisa 
appear to be based on the lost Arabic tables of >Abd-al-Ra˙mån ibn >Umar 
al-Í¥f• (d. 986),56 and the Berlin version gives 1149 completed years as their 
starting point (i.e., they were written in 1150 A.D.). The Eastern forms are 
actively used57 only in a very restricted range of works. Most of these are Latin 
texts attributed to, or based on the work of the Jewish polymath, Abraham ibn 
Ezra (1089/92–after 1160).
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Figure 2.3 
Berlin, Staatsbibliothek, lat. fol. 307, fol. 32r. A page from the Pisan Tables showing 
the use of the Eastern forms of Hindu-Arabic numerals.



Charles Burnett 38 The Transmission of Arabic Astronomy via Antioch and Pisa 39

A text very similar to the anonymous instructions for the use of the Pisan 
Tables in the Berlin manuscript occurs in London, British Library, Arundel 
377, fols 56v–63r. This text is entitled “Tractatus magistri Habrahe de tabulis 
planetarum,” and is immediately followed by a text on the astrolabe according 
to the words of “Abraham, outstanding among the philosophers of his time, 
and our master, on whose dictation we wrote this account of the astrolabe.”58 
This copy of these two texts employs the Western forms of the Arabic numer-
als, which (as we have seen) became the norm, but the presence of a key (fol. 
56r) for converting the Eastern forms to the Western forms implies that an ear-
lier copy had been written using the Eastern forms, and this is what we find 
in another manuscript of the astrolabe text: MS British Library, Cotton Vespa-
sian A.II, fols 37v–40v. Yet another text was written to accompany the Tables 
of Pisa: this text, known nowadays as the Fundamenta tabularum, is a schol-
arly discussion of the theory of astronomical tables, drawing on many Arabic 
sources. In certain manuscripts it is called “Abrahismus” and Millás Vallicrosa 
has shown that it was written by Abraham ibn Ezra in Dreux in 1154. In the ear-
liest manuscripts of the work the Eastern forms of the numerals are used.59

Abraham Ibn Ezra was born in Tudela in the Muslim kingdom of Sara-
gossa between 1089 and 1092 and spent the earlier part of his life in North-
ern Spain, though he also visited other parts of Spain and North Africa. In the 
early 1140s he started to visit Jewish communities in Christian Europe, first in 
Rome, followed soon after by Lucca (1142–1145), which is only some fifteen 
kilometers from Pisa.60 We are fortunate in possessing a manuscript to which 
have been added some notes which mention the year 1160 and were presumably 
written then, or soon after: MS British Library, Harley 5402, fols 69r–v.61 These 
notes include a handy way of calculating the position of the Moon, in which 
the writer uses Hindu-Arabic numerals in their Eastern form, and instructions 
for tables for the meridian of Lucca which are similar to those accompanying 
the tables of Pisa, as we read them in the Berlin manuscript.62 What is strik-
ing is that these notes are written in a mixture between Italian and ungram-
matical Latin. Examples of written Italian before the end of the twelfth century 
are rare; the most substantial document, in fact, is a religious poem written 
by a Jew in Hebrew script.63 We may, therefore, be in the presence of a Jew-
ish scholar writing in Lucca and using the Eastern forms of the Hindu-Arabic 
numerals: i.e., someone just like Abraham ibn Ezra.

But the Harley manuscript tells us more. The original scribe, who pre-
sumably wrote the text before 1160, did not use Hindu-Arabic numerals. He 
transcribed a copy of Pseudo-Ptolemy’s Iudicia (an astrological work) and the 
Latin corpus of Sahl ibn Bishr’s astrological texts, using, where necessary, 
roman numerals. But between these two texts he added an astronomical table 
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in which the numerical values (aside from those of the first column which are 
in roman numerals) are written entirely in alphanumerical notation. The nota-
tion is that of the Liber Mamonis, Regalis dispositio, and the Milan Rhetorica 
ad Herennium, but in this case, and in this case only, a key is provided (see 
figure 2.4).64

We see, then, in the Harley manuscript the two kinds of notation for 
numerals which appear in the Liber Mamonis: the Latin alphanumerical sys-
tem and the Eastern forms of the Hindu-Arabic numerals. The writer of the 
Liber Mamonis used alphanumerical notation for lower numbers, and the East-
ern forms for numbers consisting of more than three digits. This mixed sys-
tem occurs regularly in Islamic astronomical tables, and occasionally in Greek 
tables, in which alphanumerical notation is used for all numbers up to 360 (the 
number of degrees in the circle), but Hindu numerals are used where the num-
bers do, or in principle could, reach the higher hundreds or exceed 1000.65 It is 
quite possible that the tables to which Stephen, the author of the Liber Mamo-
nis, refers, were written in this mixed system just as the Liber Mamonis itself 
is. For some reason or other, however, neither the alphanumerical notation nor 
the mixed system caught on. Rather, as it seems, the Eastern forms, as used in 
the mixed system, were used for all numerals, as we see in the Berlin manu-
script of the Pisan Tables.

It is unlikely that Ibn Ezra himself introduced the Eastern forms of the 
Hindu-Arabic numerals. At the beginning of his Hebrew work on arithmetic, 
Sefer ha-Mispar, he mentions Hindu-Arabic numerals and substitutes for them 
the letters of the Hebrew alphabet. Of the several manuscripts of this text that 
I have seen, only one gives the Hindu-Arabic numerals in their oriental form, 

as an alternative to the Western forms which Ibn Ezra could have been familiar 
with in Spain.66 It is only in the Latin versions of Ibn Ezra’s works that the East-
ern forms are preferred, and this preference must have been due to Ibn Ezra’s 
Latin collaborators or students. It could also be questioned whether Ibn Ezra 
was responsible for drawing up the Pisan Tables, which is inferred by modern 
scholars from the fact that he bases his instructions on how to use astronomical 
tables on the Pisan Tables. The Berlin manuscript does not mention his name, 
and Henry Bate differentiates between “the tables of Abraham” and the “Pisan 
Tables.”67 Since Henry adds “of Winchester” to the to the Tables of Pisa, it is at 
least worth considering whether “>Abd al-Mas•˙ of Winchester” had anything 
to do with the transmission of al-Í¥f•s tables to the West. An Antiochene origin 
would also solve the problem that, apparently, al-Í¥f•’s tables were not known 
to Andalusi astronomers.68  

The use of the Eastern forms of the Hindu-Arabic numerals, even in 
the small number of works I have mentioned, implies at least a community 
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of scholars who understood them. The anonymous Latin scholar who colla-
borated with Abraham ibn Ezra on writing his text on the astrolabe, and the 
other Latin scholars who presumably put into good Latin his instructions for 
the use of the Pisan Tables, belong to this group. It is possible that Hermann 
of Carinthia, Robert of Ketton, and Hugo of Santalla who were working “on 
the banks of the Ebro” and in Pamplona, Tarazona and Tudela, and were all 
involved in compiling compendia on astrological judgments (the Liber trium 
iudicum and the Liber novem iudicum) also belonged to this group.69 Abraham 
ibn Ezra, as we have seen, came from Tudela, and could well have known these 
scholars. Subsequently both Hermann (in 1143) and Ibn Ezra (in 1148) are 
attested in Béziers, where Hermann’s student Rudolph of Bruges wrote a text 
on the astrolabe (in 1144), which is sandwiched between Abraham’s Funda-
menta tabularum and his treatise on the astrolabe in MS London, Cotton, Ves-
pasian A.II (all three texts, and these only, have been written in the same hand), 
though it uses only roman numerals.70

There is some evidence that these scholars also knew, and may have used 
the Eastern forms of the numerals. Three early copies of works by Hugo of 
Santalla preserve these forms, in two cases in a table only,71 in the third case in 
the text.72 It is clear that the scribes of these three manuscripts were not famil-
iar with the Eastern forms, and either copied them wrongly (in the table), or 
abandoned them (in the text). But in one copy of the Liber trium iudicum the 
scribe uses the Eastern forms, confidently and consistently, not only for writing 
the Liber trium iudicum itself, but also for the copy of Hyginus’s Astronomi-
con which accompanies that text. This is a twelfth-century manuscript incorpo-
rated into MS London, Arundel 268, which is remarkable because it is one of 
the earliest examples we have of a Western manuscript made of paper. The 
Liber trium iudicum is an astrological compendium addressed in this manu-
script to “karissime R.,” who is presumably Robert of Ketton, which would 
make the compiler Hermann of Carinthia; in another manuscript the same 
Liber trium iudicum is dedicated to Michael, bishop of Tarazona, who was 
Hugo of Santalla’s patron.73 The use of paper at this date suggests a close con-
nection with the Islamic world. The hand-writing suggests that it was written 
in Italy, as does that of Hugo’s text in MS Digby 50. 

Hermann of Carinthia was a student of Thierry of Chartres, and some of 
his translations arrived in Chartres; the Berlin manuscript of the Pisan tables 
is said to have originated from Chartres, though the instructions for the Pisan 
tables mention the longitudes of Angers and Toledo, and another text in the 
manuscript implies that Paris is place of writing.74 Ibn Ezra himself traveled 
North, to the Jewish communities in Rouen, Dreux (1153–1156), and Evreux, 
and eventually to London (1158 and 1160), where, according to some sources, 
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Figure 2.4 
British Library, Harley 5402, fol. 16r, written in alphanumerical notation. 
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he died. Thus, it is not surprising that the majority of the manuscripts of Ibn 
Ezra’s works (and hence including the Eastern forms of Hindu-Arabic numer-
als) are Norman and English.75

Much more work needs to be done on this subject. That the works of Ibn 
Ezra, Robert of Ketton, Hermann of Carinthia, Rudolph of Bruges, Hugo of 
Santalla, and Stephen the Philosopher and >Abd al-Mas•˙ of Winchester, and 
the Eastern forms of Hindu-Arabic numerals associated with these works, did 
not remain in currency for very long may be due to the fact that, after 1150, 
Toledo became the centre of the translating activity from Arabic into Latin, and 
this ‘industry’ in Toledo was so successful that it replaced or drove underground 
much of what went before. It is becoming increasingly obvious that, presum-
ably under the supervision of Gerard of Cremona, there was a concerted pro-
gram of revising and translating afresh those works that were perceived to be 
most important in astronomy and astrology. The mechanics of the transmission 
of the Toledan translations and the reasons for their success are still not clear. 
At first sight it would seem that the translations of Greek astronomical works 
directly from Greek should have been preferred to the translation of their Arabic 
versions: but in the case of Ptolemy, Theodosius, Menelaus, Archimedes, and 
so many other authors, although Greek-Latin translations were made, and often 
made before the Toledan Arabic-Latin translations, nevertheless it was the latter 
which succeeded in becoming established in the scholarly community. 

The same conclusion can be reached in regard to the works of Stephen the 
Philosopher and his colleagues. The Dresden Almagest and the Liber Mamonis 
both survive incomplete in one manuscript each, and both the alphanumerical 
notation and the Eastern forms of the Hindu-Arabic numerals failed to catch 
on. Nevertheless, some credit must be given to Stephen and his friends. If the 
arguments that are put forward in this chapter are convincing, then the Dresden 
Almagest is likely to predate the earliest hitherto known translation—that made 
from the Greek in Sicily in ca. 1160 A.D.76—by up to forty years, and the Liber 
Mamonis shows a remarkably advanced understanding of Ptolemaic astronomy 
and its Arabic developments at a correspondingly early date. Both works are 
indicative of a considerably higher level of astronomical learning among cer-
tain Latin scholars in the second quarter of the twelfth century than has hitherto 
been recognized, and they invite us to look to the Eastern Mediterranean, rather 
than to Spain, as a source for this learning.
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Notes

1. C. H. Haskins, Studies in the History of Mediaeval Science, 2nd ed. (New York, 
1927), p. 109, n. 155: “There is also a confusing form of numerals [in the Dresden 
Almagest]: b = b = 2, etc. Cf. supra, n. 128 [discussion of the numerals in the Liber 
Mamonis].”

2. The fullest account of the Liber Mamonis up to now is that of Haskins, Studies, pp. 
98–103. An edition of the work has been promised by Richard Lemay. 

3. I am very grateful to Menso Folkerts for lending me a microfilm of Dresden, Db. 87, 
and to Richard Lorch for information on the text. For a description of the manuscript 
see Bertoldo di Moosburg, Expositio super elementationem theologicam Procli, 184–
211, De animabus, ed. L. Sturlese (Rome, 1974), pp. xlvii–xlix. I am also indebted to 
Gerhard Brey for sending me a copy of the on-line description of the same manuscript 
from the ICCMSM database.

4. J. L. Heiberg, “Noch einmal die Mittelalterliche Ptolemaios-Übersetzung,” in 
Hermes, 46, 1911, pp. 207–216 (see pp. 215–216). 

5. MS Dresden, Db. 87, fol. 15v: “Explicit primus sermo libri mathemathice Ptolomei, 
qui nominatur megali xintaxis astronomie translacione dictamine (elsewhere ‘dictami-
nis’) philophonia wittomensis ebdelmessie” (with variants in the other explicits ‘win-
tomiensis’ and ‘wuttomensis’). The interpretation of these explicits and of the name of 
the translator/dictator has been explored in C. Burnett, “ >Abd al-Mas•˙ of Winchester,” 
in Between Demonstration and Imagination: Essays on the History of Science and 
Philosophy Presented to John D. North, ed. L. Nauta and A. Vanderjagt (Leiden, 1999), 
pp. 159–169. “>Abd al-Mas•˙” (“Servant of the Messiah”) is sometimes a generic name 
for a Christian in a Muslim society. 

6. This fact was first pointed out to me by Richard Lorch.

7. “Preclare fecerunt qui corrigentes scienciam philosophie, o Syre, diviserunt theori-
cam partem philosophie a practica” = ni>ma må fa>ala f•må arå lladh•na staqßaw >ilm 
al-falsafa yå S¥rus f• ifrådihim juz< al-falsafa an-naΩar• >an al->amal• (P. Kunitzsch, 
Der Almagest, Wiesbaden, 1974, p. 133). Contrast the Greek: Pavnu kalw`ı oiJ gnhsivwı 
filosofhvsanteı w\ Suvre, dokou`siv moi kecwrikevvnai to; qewrhtiko;n th`ı filosofivaı 
ajpo; tou` praktikou; (Ptolemy, Syntaxis mathematica, ed. J. L. Heiberg [Leipzig, 1898], 
p. 4, lines 7–8) = ‘The true philosophers, Syrus, were I think, quite right to distinguish 
the theoretical part of philosophy from the practical’ (trans. G. J. Toomer, Ptolemy’s 
Almagest [London, 1984], p. 35).

8. ‘discordia’ (fol. 36r; ‘anomaly’) corresponds to ikhtilåf (‘difference’), rather than to 
ajnwmaliva; ‘discordia visus’ (fol. 50r; ‘parallax’) = ikhtilåf al-manΩar (‘difference of 
vision’), rather than parallavxiı; ‘circulus rotunditatis’ (fol. 36v; ‘epicycle’) = falak 
al-tadw•r (‘circle of roundness’), rather than ejpivkukloı; ‘longinqua longinquitas’ (fol. 
37r; ‘apogee’) = al-bu>d al-ab>ad (‘the most distant distance’), rather than ajpovgeion, 
etc. 

9. E.g., fol. 2r: “rememorat qualitatem communem,” which is followed immediately by 
another translation of the same phrase: “vel commemoratio communis qualitatis” and 
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is followed soon after by another double translation: “rememorabimus vel commemora-
bimus ergo.” The words “rememoratio” and “rememorare” are particularly common in 
the Arabic-Latin translations of John of Seville and Gerard of Cremona, corresponding 
to forms of the Arabic root dh-k-r.

10. Fol. 1r: “propter quod aretius morum anime possit esse in pluribus sine doctrina”; 
see Heiberg, p. 4, line 12: dia; to; tw`n me;n hjqikw`n ajretw`n ejnivaı uJpavrxai duvnasqai 
polloi`ı kai; cwri;ı maqhvsewı. The Latin word-order and sense follow the Arabic text 
here.

11. Hipparchus is always “ypparcus,” Kalippus is “caliphi” (fol. 70r), Phanostratos, 
the Athenian archon, appears as “Phanastrato Athenarum custode” and “Phanastri pri-
matis Athanarum” (both fol. 69r; cf. trans. Toomer, pp. 211–212), the Egyptian months 
appear as “Thuth” (Thoth), “Phamenoth” (Phamenoth), “Messurem” (Mesore), and 
“Mechir” (Mechir) on fols 69r–70v. The Greek months, however, either betray the 
influence of Arabic transcription (fol. 69r “Bussiothos” for Poseideon) or are omitted 
altogether. A list of month names, including the Egyptian and the Greek, preceded the 
Almagest text in Wolfenbüttel, Gud. lat. 147, which added the preface of the Sicilian 
Greek-Latin translation of the Almagest to a text of the Toledan Arabic-Latin translation 
(see Kunitzsch, Almagest, p. 95).

12. E.g., fol. 9v: ‘Ponemus igitur istud in tabulis’ (= Almagest, I.11); fol. 20v: ‘in 
tabulis que hoc verbum secuntur’ (= Almagest, II.6, tables for the third parallel up to 
the North Pole); fol. 22v: “posuimus autem tabulas orientalium .x. et decem graduum” 
(= Almagest, II.8); fol. 30v: “ponentes eorum tabulas” (= Almagest, II.13); fol. 55r: “et 
posuimus in prima tabularum tempora collectorum annorum et displicatorum (sic) et 
mensium et dierum et horarum et post istud motum in longo et post illum in discor-
dia et post illum in lato et post illum in longinquitatem que est inter Solem et Lunam” 
(= Almagest, IV.4).

13. It is possible to imagine that the tables were left in the original form, in Greek or 
Arabic (or merely with their rubrics glossed in Latin), and that the reader was expected 
to be able to interpret the numeral values: this would provide a possible reason for the 
adoption of alphanumerical notation (the notation of the Greek and Arabic tables) in the 
Latin text; see below.

14. The combination of both forms occurs in “liber estichie elementorum” (fol. 7r) and 
the translator also uses the abbreviations “l.e.e.” and “l.he.e.” It is unlikely that a scholar 
who knew Ptolemy’s Almagest did not have access to Euclid’s Elements, and it is worth 
considering whether our translator also translated the Elements and if any extant version 
shows the characteristics of his style.

15. MS Istanbul, Ahmet III, 3464, fols 216r–217r. The correspondence between the 
two works begins with the theorem which precedes the addition, which is the last the-
orem in Almagest, I, chapter 13. For an edition of the relevant section of the Dresden 
manuscript see R. Lorch, Thåbit ibn Qurra On the Sector-Figure and Related Texts, 
Frankfurt 2001, pp. 362–375.

16. The relationship between the Dresden Almagest and the work of al-Nasaw• needs 
further investigation. Both texts refer to the same earlier theorems of Ptolemy (e.g., 
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Dresden Almagest, fol. 13v: “quod est ostensum in .xii. figura istius sermonis”), and 
the style of writing in the Dresden Almagest gives the impression that the “addition” 
is integral to the work: the same system of cross-references and appeals to the relevant 
theorems of Euclid’s Elements are found throughout the section of the Almagest on trig-
onometry and spherical astronomy. 

17. I have noticed only that figure 4.5 (the rejected eccentric model for the Moon’s 
motion) is missing.

18. “Scribe” and “translator” need not be distinguished here in that the scribe of this 
unique manuscript appears to have tried to copy what was before him without altera-
tion. They need only be distinguished when (as sometimes happens) it is clear that the 
scribe misunderstood what was in front of him.

19. The use of “.k.” for twenty here is due to the flaw in the system mentioned below, 
and not to confusion with the Greek and Semitic alphanumerical notations in which 
“k” is 20.

20. The scribe uses the abbreviation for “enim,” but in two forms: the capital H with the 
middle bar extended in both directions (often described as an English practice) on fol. 
54r, and .n. on fol. 66v. The first form, which is a distinctive symbol, may have been the 
original one. It is also possible that the Greek capital eta (H) was originally intended, 
and that, in copying the text on fol. 66v, the scribe mistook this sign for the abbrevia-
tion for “enim.” 

21. The isolated use of Q where the Greek text has “900” on fol. 63v is apparently a mis-
take, since there are several examples of Q being used for “600.” In other cases where 
the Greek text has “900” the number is written out in the Latin translation as “nongenti.” 
Whether the scribe’s letters are closer to Greek majuscules or miniscules can only be 
determined by comparison with Greek letters occurring both in Greek and Latin manu-
scripts of the period. Latin authors tended to use the Greek majuscule, and we have sev-
eral examples of the knowledge among them of the numerical values of the Greek letters; 
see W. Berschin, Greek Letters and the Latin Middle Ages, revised and expanded edition, 
trans. J. C. Frakes, Washington, D.C., 1988, pp. 29–30 and 289, n. 40. 

22. The alphanumerical notation in Liber Mamonis (see below) is generally rubri-
cated.

23. On Hindu-Arabic numerals in Arabic manuscripts see Kunitzsch’s chapter in this 
volume. The Eastern forms in this manuscript are more closely assimilated to letters of 
the Latin alphabet than in other manuscripts. The fact that different letters are used for 
the same numerals in the case of “1” and “9” in the Cambrai manuscript of the Liber 
Mamonis might suggest that the assimilation was made by the scribe, who expected to find 
letter-forms, rather than by the author, from whom one would expect a one-to-one 
equivalence of symbols.

24. Richard Lemay, in “The Hispanic Origin of Our Present Numeral Forms” (Viator, 
8, 1977, p. 435–62) suggests that this “Western form” arose out of a mixture of the 
original Sanskrit numerals and Visigothic forms, but the question of origin is not yet 
settled.



Charles Burnett 46 The Transmission of Arabic Astronomy via Antioch and Pisa 47

25. MS Munich, Bayerische Staatsbibliothek, clm 18927, f. 1r; see Figure 1a in R. 
Lemay, “The Hispanic Origin . . .”

26. The two forms are also distinguished in Arabic in the twelfth-century Maghrib by 
Ibn al-Yåsam•n: see Ab¥ Fåris, “Dal•l jad•d >alå >ur¥bat al-arqåm al-musta>mala f• al-
maghrib al->arab•,” Al-lisån al->arab•, 10 (1392/1973), pp. 232–234; the full text of Ibn 
al-Yåsam•n has been edited in a dissertation by a student of Ahmed Djebbar, see p. 345.

27. Of the terms already mentioned (n. 8 above), the Liber Mamonis (M), gives “visus 
discordia” (fol. 27v) for “parallax”, “rotunditas” or “rotundus circulus” (fol. 39r et pas-
sim) for “epicycle” (cf. D[resden Almagest], “circulus rotunditatis”), and “longinqua 
longinquitas” and “propinqua longitudo” (M, fol. 29v) for “apogee” and “perigee.” 
Other parallels in terminology are “speralis” (rather than “spericus”) for “spherical” (M 
and D passim), “austrum” (rather than “meridies”) for “south” (M, fol. 49v, D, fol. 10v), 
“circulus recti diei” for “equator” (M, fol. 8v; cf. D, fol. 6r, “circulus rectitudinis diei”), 
“punctum capitis” for “zenith” (M, fol. 18v, D, fol. 16r), “synodos” for “conjunction” 
(of planets) and “new moon” (M, fol. 39r, D, fols 55r, 65r and 68r), “pansilini” for “full 
moon” (M, fol. 34r, D, fols 55r and 65r), “sexagenaria” for “minute” (M and D passim), 
“latum” for “latitude” (M, fol. 49v, D, fol. 51r), “circulus signorum” for “zodiac” (M, 
fol. 49v, D, fol. 10r), and, finally, the word for Ptolemy’s work itself: “megali sintasi” 
(ablative; M, fol. 39v), “megali xintaxis” (nominative; D, fol. 15v etc.). Occasionally, 
the author of the Liber Mamonis uses different terminology, perhaps because of his 
greater familiarity with the Latin astronomical and geometrical tradition: e.g., “liber 
geometrie” (M, fol. 7v), rather than “liber elementorum” for Euclid’s work; “circu-
lus extra centrum” (M, fol. 39r), rather than “circulus forinseci centri” (D, fol. 36v) 
for “eccentric”; “caput draconis” and “cauda draconis” rather than “ligans capitis” and 
“ligans caude” (D, fol. 67r) for the ascending and descending nodes.

28. To call a “minute” a “sixtieth part (of a degree)” would seem a natural thing to do, 
but such terminology does not appear to have been used either in the Greek or in the 
Arabic versions of the Almagest: see Kunitzsch, Almagest, pp. 156–160.

29. Fol. 22v: “Tholomeus autem et ceteri quibus sanior est intellectus. . . .”

30. Fol. 27v: “Deprehensum autem a probatissimis in astronomia viris Tptolomeo (sic) 
et reliquis cognovimus maiorem hanc esse visus discordiam Mercurio quam in Venere, 
Veneremque maiorem habere Sole.”

31. Fol. 29v–30r: “Sunt autem hii duo puncti fixi nec moventur sicut Ptolomeus posuit 
in Sintaxi. Aliorum autem qui secuti sunt deinceps astronomicorum quibus fuit etiam 
et hec et alia secretius rimari, sententia est in orientem moveri tardo motu, in .t. scili-
cet et .f. annis uno gradu. Qua in re mirum est Ptolomei deceptam fuisse sollertiam. 
Moventur enim. Set illi casus causa extitisse probatus <est> quidam sui temporis pre-
cessor astronomus cuius inquirendo altitudinis Solis loco falsa fuit inspectio. Illo enim 
in loco longuinquam Solis longinquitatem suo tempore dixerat, quo Ptholomeus perspi-
catius omnia astrorum secreta discutiens et investigans suo tempore illam esse veracis-
sime comperuit. Hinc ergo deceptus Ptolomeus fuisse dicitur, tametsi non ipse nisi quod 
non moveri dixit. In loco enim inveniendo nichil peccavit, sed qui precesserat ipsum 
deceptus fuit. Non ergo Ptholomei sagacitas cecidisse arguenda est, sed illius depra-
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vanda ignorantia qui quod nescivit scripture tradens sapienti viro cadendi causa fuit. 
Nunc satis quod pro illius defendenda industria diximus, ad nostra redeamus.”

32. Fol. 39v: “Motus autem is quo hec spera movetur et alias secum movet tardus est ab 
occidente in orientem, complens, sicut dixit Ptolomeus in Megali sintasi sua in .t. anno-
rum curriculo unius cursum gradus. Aliorum sententia est in .t.f. annis.”

33. Fol. 44v: “Trium autem planetarum, Saturni scilicet Iovis et Martis, spere simil-
lime sunt adinvicem in numero et divisionibus sperarum, motu quoque et circulis fere, 
sicut dixisse Ptolomeus in sua probatur Sintaxi.”

34. Fol. 49v: “Mensura autem maioris lati planetarum et Lune in septentrionem et aus-
trum a circulo signorum est Lune quidem .d. graduum .n.e. sex., per mensuram qua 
dividitur magnus circulus in .x.p. partes, Saturni trium, Iovis duorum, Martis in septen-
trione .d. graduum .l. sex., in austrum .g. graduum, Veneris, sicut dicit Ptolomeus in sua 
Sintaxi, .f. graduum .b. sex., sicut autem alii dixerunt astronomi, novem, Mercurii .d.”.

35. Fol. 49v: “Ima vero spera Saturni hec movetur in orientem tardo motu qui est in .t. 
annis uno gradu super duos fixos polos. Hii sunt duo poli circuli signorum quem Solis 
centrum circinat, sicut dicit Ptolomeus sua et precedentium ratione inventum.”

36. For an account of the hay<a tradition see Y. T. Langermann’s introduction to his edi-
tion and translation of Ibn al-Haytham, On the Configuration of the World, New York 
and London, 1990, especially pp. 25–34, and A. I. Sabra, “Configuring the Universe: 
Aporetic, Problem Solving, and Kinematic Modeling as Themes of Arabic Astronomy,” 
Perspectives on Science, 1998, pp. 288–330.

37. Fol. 38r: “Verum cum in aliis Arabem quendam plurimum secuti sumus, in hoc 
quoque per multum sequemur, licet quedam de sperarum numero et rotunditatum inve-
nerimus et de circulis quidem et inclinationibus planetarum vera perstrinxit a quibus 
sperarum numerus dissonat.” 

38. See items 3 and 4 above. This is possibly a mistake for 66 years, al-Battån•’s value, 
unless the author has confused the precession rate with the small fraction of a day 
(1/106) by which a year is less than 365 1/4 days long, according to al-Í¥f• (see J.-M. 
Millás-Vallicrosa, “El magisterio astronómica,” n. 59 below, p. 314). 

39. Fol. 29r: “Motus autem huius spere speralis circuitus est ad orientem ab occidente 
super duos fixos polos et fixum polorum radium. Non sunt autem hii poli aut radius poli 
mundi aut radius, set horum uterque a sibi proximo mundi polo .l.c. gradibus .m.e. sex. 
distat.”

40. John of Seville’s translation, printed Paris, 1546, p. 16 and in MS Florence, Con. 
soppr. J.II.10, fol. 154r: “Et est secundum quod invenit Ptholomeus .xxiii. graduum et 
.li. minutorum, cum fuerit circulus .ccclx. graduum, probatione autem certissima qua 
probavit Almenon . . . et convenerunt in ea plures sapientes esse .xxiii. graduum et .xxx. 
minutorum.” The errors in this text can be corrected from the translation by Gerard of 
Cremona (ed. R. Campani, Il “libro dell’aggregazione delle stelle,” Città di Castello, 
1910, p. 229): “ . . . secundum considerationem vero consideratam et expertam quam 
Johannes filius Almansoris (This is Ya˙yå ibn Ab• Manß¥r, who was one of al-Ma<m¥n’s 
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correctors) consideravit in diebus Maimonis et convenit in ea numerus sapientum est 
23 gradus et 35 minuta,” and by the Latin translation accompanying J. Golius’s edi-
tion (Muhammedis fil. Ketiri . . . qui vulgo Alfragani dicitur, Elementa astronomica, 
Amsterdam, 1669, p. 18): “et verò juxta dimensionem quam probatum (al-mumta˙an) 
vocant, quamque piae memoriae Almámon institui jussit, adhibitis et eam rem viris 
doctis compluribus, ea declinatio continet gradus 23, et minuta 35.”

41. See the preface to the second part of the Regalis dispositio, in which Stephen apol-
ogizes for leaving certain terms in Arabic: “Malui igitur paulo infirmus videri quam 
scientiam non transferre” (“I preferred, therefore, to seem a little infirm than not to 
transmit knowledge”). The prefaces to the Regalis dispositio are edited in the article 
mentioned in the following note.

42. The identity of the two Stephens is explored in detail in my “Antioch as a Link 
between Arabic and Latin Culture in the Twelfth and Thirteenth Centuries,” in Occident 
et Proche-Orient: contacts scientifiques au temps des Croisades, ed. I. Draelants, A. 
Tihon, and B. van den Abeele, Louvain-la-Neuve, 2000, pp. 1–78.

43. That both this date and the dates of the translation of the Regalis dispositio are 
given in terms of “a passione domini,” constitutes another link between the two works. 
It does not imply that the 33 years of Christ’s life have to be added to the dates; the argu-
ments for this are given in my “Antioch as a link . . .,” Appendix III.

44. R. W. Hunt, “Stephen of Antioch,” in Medieval and Renaissance Studies, 6, 1950, 
p. 172–173.

45.  “Stephanon autem quidam Pisanus ad illas partes ivit et linguam illam addiscens 
eam [Practica] ex toto transtulit” (MS Erfurt, Wissenschaftliche Bibliothek, Amplon. 
O 62, f. 50r).

46. MS British Library, Sloane 2426, fol. 8r (within a Theorica attributed by a later 
scribe to Cophon): “Stephanus nepos patriarche Antiochensis.” This preface is edited 
in C. Singer, “A Legend of Salerno: How Constantine the African Brought the Art of 
Medicine to the Christians,” The Johns Hopkins Hospital Bulletin, 28, 1917, pp. 64–69 
(see p. 67a).

47. A comparison between the translating techniques and the terminology used in the 
Dresden Almagest and the Regalis dispositio might reveal further links. Suffice to say 
here that both works give elaborate details concerning the author and translator, and use 
the word “sermo,” in preference to “liber,” for the constituent books (= Arabic maqåla). 
In the explicit to the fourth book of the Dresden Almagest the word “liber” has been 
expunged, and “sermo” has been written in its place.

48. See Burnett, ‘Antioch as a link . . . ’, passim.

49. Fol. 2r: “Quoniam in canonem astronomie ̂quas proposueramus regularum exsequ- 
to tractatu promissum exsolvimus, secundum hoc opus . . . aggredior.”

50. Fol. 44v: “Hence it is that, in finding their latitude in the rules for the canon, we 
have realized that a certain latitude is taken . . .” (“Inde est quod in eorum inveniendo 
lato in canonis regulis quoddam latum sumi precepimus”). Italics mine.
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51. E.g., fol. 46r: ‘In quarte tabula postquam rectificata fuerit . . . ’; fol. 46v: ‘Quare 
autem quarte tabule nec (?) tercia auferatur sepe quinta iungitur, evidens hoc modo fiet 
ratio. Secunde tabule numerus ab obliqua longinquitate circuli extra centrum usque .s. 
[= 90] fere decrescit, exinde usque .t.r. [= 180] recrescens.’

52. They are unlikely to be the Regulae in Canonem Astronomiae in Florence, Bibl. 
Naz., Con. Soppr. J.II.10, f. 235ra–239va (227r–231v), as maintained by R. Lemay 
in De la Scolastique à l’histoire par le truchement de la philologie: itinéraire d’un 
médiéviste entre Europe et Islam, in La diffusione delle scienze islamiche nel medio evo 
europeo, Convegno internazionale dell’Accademia Nazionale dei Lincei, Rome, 1987, 
pp. 399–535 (see p. 472), not only because these rules are not accompanied by tables, 
but also because the astronomical terminology is completely different. It is true that 
both texts criticize the opinion among the Latins that retrogradation is caused by the 
attraction of the rays of the Sun (Florence MS, fol. 238/230ra–va, Liber Mamonis, fol. 
39r, preface to the fourth book), but the language of the criticisms is different and the 
criticised opinion was widespread.

53. Henry Bate, Descriptio instrumenti pro equatione planetarum, which follows his 
Magistralis compositio astrolabii (1274), printed with Liber Abraham iudei de nativ-
itatibus, Venice, 1485, sig. d4 recto–verso: ‘Ptholomeus vero: et Geber: Albategni: 
Abrahamque Iudeus: et Açophius ceteri quoque magistri probationum et maxime orien-
tales astronomi motus planetarum secundum nonam speram considerantes radices suas 
super hoc fundauerunt: et hoc patet in tabulis Ptholomei: Albategni et Abrahe: in tabulis 
Pisanis vuintoniensibus et aliis.’ The punctuation of the Renaissance printing has been 
carefully observed, and corresponds to that of MS Oxford, Digby 48, fols 152v–155v.

54. British Library, Arundel 377, fol. 56v; see Burnett, The Introduction of Arabic 
Learning into England, London, 1997, pp. 48–49. The tables are not given in this copy.

55. The implications of this coincidence are discussed in my “ >Abd al-Mas•˙ of 
Winchester.’”

56. For the arguments for believing that the Latin tables preserve those of al-Í¥f• see 
R. Mercier, ‘The Lost Z•j of al-Í¥f• in the Twelfth Century Tables for London and Pisa,’ 
in Lectures from the Conference on al-Í¥f• and Ibn al-Naf•s, Beirut and Damascus, 
1991, pp. 38–72. Al-Í¥f• served several members of the B¥yid dynasty and is attested 
in Dinawar and Isfahan.

57. I discount (1) the ‘fossilized’ forms in which a Latin translator or scribe seems to 
be copying Eastern forms from Arabic manuscripts without understanding their signi-
ficance (though these are valuable as giving evidence for which forms were used in 
Arabic manuscripts), and (2) the instances in which a Latin scribe gives the series of 
Eastern forms as an alternative to the Western forms, the latter of which he uses exclu-
sively. For a fuller account of the use of Eastern forms in Latin manuscripts and their 
Arabic exemplars, see C. Burnett, “Indian Numerals in the Mediterranean Basin in the 
Twelfth Century,” in From China to Paris: 2000 Years’ Transmission of Mathematical 
Ideas, ed. Y. Dold-Samplonius et al. Stuttgart, 2002, pp.237–288.

58. British Library, Cotton Vespasian A.II, fol. 40v: ‘Ut ait philosophorum sibi con-
temporaneorum Habraham magister noster egregius quo dictante et hanc dispositionem 
astrolabii conscripsimus.’
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59. See J.-M. Millás-Vallicrosa, ‘El magisterio astronómica de Abraham ibn ‘Ezra 
en la Europa latina,’ in id., Estudios sobre historia de la ciencia española, Barcelona, 
1949, pp. 289–347 and the same author’s edition of the Fundamenta tabularum: El 
libro de los fundamentos de las Tablas astronómicas de R. Abraham Ibn Ezra, Madrid 
and Barcelona, 1947. This publication includes illustrations of the numeral forms in the 
manuscripts.

60. Shlomo Sela, in a valuable article on Ibn Ezra’s versions of astronomical tables and 
instructions for their use, adduces arguments for Abraham being in Pisa itself: see his 
‘Contactos científicos entre judíos y cristianos en el siglo XII: el caso del Libro de las 
tablas astronómicas de Abraham ibn Ezra en su versión latina y hebrea,’ Miscelánea de 
estudios árabes y hebraicos, sección Hebreo, 45, 1996, pp. 185–222 (see pp. 212–222). 
Further information is given in id., ‘Algunos puntos de contacto entre el Libro de las 
tablas astronómicas en su versión latina y las obras literarias hebreas de Abraham ibn 
Ezra,’ Miscelánea de estudios árabes y hebraicos, sección Hebreo, 46, 1997, pp. 37–
56 and Astrology and Biblical Exegesis in Abraham ibn Ezra’s Thought (in Hebrew), 
Ramat-Gan, 1999.

61. For a study of this manuscript see C. Burnett, ‘Latin Alphanumerical Notation 
and Annotation in Italian in the Twelfth Century: MS London, British Library, Harley 
5402’, in Sic Itur ad Astra, Festschrift Paul Kunitzsch, ed. M. Folkerts and R. Lorch, 
Wiesbaden, 2000, pp. 79–90; this includes editions of the mixed Italian-Latin texts and 
the astrological table mentioned in n. 64 below.

62. One may compare the opening of these instructions—‘Sciatis quod tabule iste facte 
sunt super ciuitas luce. Et da angle da’occidente usque ad illam abet (i.e., habet) G 
<radus> .xxxiv;—with the statement by José Bonfils that Ibn Ezra ‘in the tables which 
he composed in Lucca in the land of Lombardy, affirmed that the longitude of Lucca, 
that is, the distance from the West, is 34 degrees’: see Sela, ‘Contactos científicos,’ p. 
206.

63. B. Migliorini, in Storia della lingua italiana, Florence, 1985, p. 111. I am grateful 
to Francesca Ziino and Laura Lepschi for advice on early examples of Italian.

64. This table occurs elsewhere only in a later manuscript, Pommersfelden 66, fol. 
84r. 

65. See ‘Antioch as a Link . . .’, Appendix II.

66. Two sets of numeral forms are given in the margin of f. 1v of Paris, BNF, hébreu 
1052 (fifteenth century); in the text of this manuscript, however, and in the copies of 
Sefer ha-Mispar in MSS Paris, BNF, hébreu 1049, 1050 and 1051, only the Western 
forms are used. I am grateful to Tzvi Langermann for alerting my attention to these 
manuscripts.

67. See quotation in n. 53 above. On the other hand, MS Cambridge, University 
Library, Kk.I.1, fol. 145v mentions the ‘tabule mediorum cursuum Solis ad meridiem 
Winton. ab Abrahamo condite’ (I owe this reference to Fritz Saaby Pedersen).

68. The tables are not mentioned, as far as I know, in any Arabic text, though there 
remains the problems of how, in the Fundamenta tabularum, they are described as 
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‘secundum Azofi compositum, et Azarchelis probatio fuit in anno 482 ab helligera’ (El 
libro de los fundamentos, ed. J. M. Millas Vallicrosa, p. 87). With this should be com-
pared a passage in the Sefer ha-Olam in which Abraham says that al-Zarqålluh’s value 
for the amount by which the year falls short of 365.25 days is the same as that of al-Í¥f•, 
without explicitly saying that the later astronomer was indebted to the earlier; I owe this 
information, once again, to Tzvi Langermann.

69. See C. Burnett, ‘A Group of Arabic-Latin Translators Working in Northern Spain in 
the mid-twelfth Century,’ Journal of the Royal Asiatic Society, year 1977, pp. 62–108.

70. See R. Lorch, “The Treatise on the Astrolabe by Rudolf of Bruges,” in Between 
Demonstration and Imagination: Essays in the History of Science and Philosophy 
Presented to John D. North, ed. L. Nauta and A. Vanderjagt (Leiden, 1999), pp. 55–
100. (This article includes an edition of the text.) 

71. That is, in two copies of Hugo’s translation of Ibn al-Muthannå’s commentary on 
al-Khwårizm•’s astronomical tables: Cambridge, Gonville and Caius, 456/394, fol. 73r 
and Oxford, Bodleian Library, Selden, Arch. B, 34, fols 32v–33r; the third copy, ibid., 
Savile, 15, does not include the tables.  

72. Hugo’s translation of a work on geomancy, in Oxford, Bodleian, Digby 50, fols 
94r–101r.

73. See Burnett, ‘A Group of Arabic-Latin Translators.’

74. For a thorough description of the manuscripts, see V. Rose, Verzeichniss der latein-
ischen Handschriften . . . der Königlichen Bibliothek zu Berlin, II, 3, Berlin, 1905, pp. 
1177–1185. The Chartres provenance is suggested in a modern note on the cover of the 
manuscript itself (Rose gives “France” as the provenance). For the inhabitants of Pisa 
and Angers, see fol. 27r: “Et scias quod iste tabule conposite sunt secundum meridiem 
Pissanorum quorum longitudo occidentalis 33 graduum est, Andegavensium vero lon-
gitudo occidentalis 24 graduum”; on fol. 30r there is a “Tabula diversitatis aspectus lune 
ad longitudinem Toleti 39 graduum 54 minutorum et eius hore 14 minuta horarum 51”; 
Paris is mentioned on fol. 1r: “nos sumus Parisius existentes.” I am grateful to Raymond 
Mercier for some readings of this manuscript.

75. For the diffusion of these manuscripts in Normandy and England see C. Burnett, 
The Introduction of Arabic Learning into England, pp. 46–60.

76. Haskins, Studies, pp. 157–163, J. E. Murdoch, “Euclides Graeco-Latin,” Harvard 
Studies in Classical Philology, 71, 1966, pp. 249–302 (see pp. 263–270; the date 1165 
is proposed on p. 269).





II

Transformations of Greek Optics





The section on “the science of optics” (>ilm al-manåΩir) in al-Fåråb•’s (d. 339/ 
950) Catalogue of the Sciences (I˙ßå< al->ul¥m)—a work representing the state 
of many fields up to about the mid-4th/10th century—covers five distinct sub-
jects within the full text of its Arabic edition (hereafter I):1 the need for such an 
autonomous science and its distinctions from geometry (I.1), its function and 
methods (I.2), its applications and instruments (I.3), its assumptions and mech-
anisms (I.4), and its domains of inquiry (I.5).2 The respective passages, on the 
other hand, cover their intended subjects all with reference to some aspect of 
“appearances” (their veracity in I.1, justifiability in I.2, fallibility in I.3, and 
elements and effects in I.4–I.5), the appearances involved being in most cases 
those other than commonly experienced, either in terms of perceived shapes or 
sizes (I.1 and I.2) or in the form of appearance through mediums other than air 
(I.4 and I.5). 

From the standpoint of the history of optics before 339/950, the long pas-
sage is an indispensable source for providing a most fitting outline and time-
frame for discussion: on the one hand, it contains evidence on the state of early 
Arabic optics: its sources and problems, traditions and orientations, and bound-
aries and methods,3 along with the terminological aspects of the “appearances” 
that it covers; on the other hand, its treatment of optics from the perspectives 
originally intended (its classification as a science and a mathematical science) 
deserves close attention, if only for the partial, and potentially misleading, 
nature of “evidence” provided by it, from a historical perspective. 

Take the case of the opening passage (I.1), which addresses the problem 
of the veracity of appearances with reference to the age-old example of the cir-
cular appearance of far rectangular objects (see below). It is true that what that 
passage contains provides valuable historical evidence for the identification of 
one of the most central problems of early optics (the most central, if one goes 
by the prominent place it occupies in that passage alone). But it is also true that 
what the passage does not contain (in this case, reference to other central prob-
lems of optics at this early period), is, at best, incomplete in the light of what 
is available through other early sources. Whether al-Fåråb• is not fully aware 
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of the optical problems of his time (including problems as central as clarity of 
vision, on how clear something is seen, rather than how real the nature of its 
appearance is), or it is the case that he is not referring to these in the context of 
his intended discussion (in this case, distinguishing between the two mathemat-
ical sciences of optics and geometry, with the same objects but different func-
tions), one may argue that the five passages, marked here I.1–I.5, are all notable 
for both what they contain and what they do not. Indeed, what is contained in 
the texts of the middle and closing passages too is quite reflective of many 
aspects of “the science of aspects”(>ilm al-manåΩir): in the case of the second 
and third passages (I.2 and I.3), its methodological and practical aspects, and in 
the case of the fourth and fifth passages (I.4 and I.5), its theoretical and physi-
cal aspects respectively. It is the purpose of the present essay to include a dis-
cussion of what is not contained in all the respective passages (I.1–I.5) as well, 
with a historical analysis of their full texts in the light of early optical sources 
previously treated by the present author from other perspectives.4

What follows is an individual treatment of the passages forming the 
optics chapter of al-Fåråb•’s Catalogue in historical context, as the basis for 
the argument that its coverage of the “science of aspects” (>ilm al-manåΩir) in 
general and of “appearances” (må yaΩhar) in particular, while extensive and 
informative, is far from exhaustive of the full range of problems and concepts 
present within the manåΩir (optics), maråyå (catoptrics), and miså˙a (survey-
ing) core of the early Arabic optical tradition.

The “manåΩir” tradition, which in its earliest stages was primarily 
Arabic,5 is a rich tradition where the Euclidean concept of “appearance” (from 
faivnesqai),6 takes on many aspects of its own, from what “appears to sight” 
(yaΩhar f• al-baßar), “seen” or “seen as” (yurå), or else “viewed” (yunΩar: 
from the same verbal root as manåΩir) 7 in al-Fåråb• (I.1–I.2), to what appears 
(Ωahara), “seen” (yubßar), “thought to be seen” (yuΩannu annahu yurå), “imag-
ined to be seen” (qad yutawahhamu an yubßar), “more accurately seen” (aßdaqu 
ru<yatan)—and outside of the Euclidean text, also what sight or the eye (baßar) 
“perceives” (yudrik).8 The manåΩir tradition is also a versatile and complex tra-
dition, one that even if the particular “agenda” of al-Fåråb•’s Catalogue allowed 
for the full coverage of its versatility (I.3–I.5), it could not possibly be expected 
to reflect the many shades of its complexities. 

The miså˙a (surveying) and maråyå (catoptrics) components of the 
manåΩir tradition are similarly illuminated by al-Fåråb•’s discussions, but 
understandably limited in their scopes of representation: The case of miså˙a is, 
despite the involvement of a wide range of methods (determination of heights, 
widths, and lengths) and objects (from trees, walls, valleys, and rivers to moun-
tains and the heavenly bodies) in the corresponding al-Fåråb• passage (I.3), 
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still short of a range of problems posed, not only by the one condition men-
tioned in passing—that of “sight (baßar) falling on (yaqa>u >alå)” objects—but 
especially by the most common (and as we shall see, problematic) instrument 
for surveying it fails to mention—a plane mirror. As for maråyå, treated by al-
Fåråb• at once as an integral part and separate branch of optics (I.5), the rather 
unusual categorization of “indirect” (ghayr mustaq•m) rays, first as “deflected” 
(mun>a†if), “reversed” (mun>akis) and “bent” (munkasir) next to “direct” 
(mustaq•m) rays, and then, to the exclusion of refracted rays,9 is both wanting 
and confusing, this time to be examined in the light of the largely unsettled, 
and particularly problematic state of Arabic optics during the earliest phases 
of its development.

I Veracity and Accuracy of Vision

I.1: “The science of optics (>ilm al-manåΩir) investigates the same things as 
does the science of geometry, such as figures, magnitudes, order, position, 
equality and inequality, but not in so far as these exist in abstract lines, sur-
faces and solids, whereas geometry investigates them insofar as they exist 
in abstract lines, surfaces and solids. Thus geometrical investigation is more 
general. But there was a need for a separate science of optics, although [its 
objects] are included among the objects of geometry, because many of the 
things which are proved to be of a certain shape or position or order or 
the like, acquire opposite properties when they become objects of vision: 
thus objects which are really square are seen (r-<-y) as circular when seen 
(n-Ω-r) from a distance and equal objects appear to be unequal and unequal 
ones appear equal, and many objects which are placed in the same plane 
appear to be some lower and some higher, and many foreground objects 
appear to be farther back. And such things are many. . . .” 

The opening passage (I.1) poses the question of the need for a science 
of optics (>ilm al-manåΩir) in terms of the problem of the truth correspondence 
(al-˙aq•qa) of “what appears” (må yaΩhar) a certain way. In discussing the 
problem of the veracity of appearances, the present passage addresses a histori-
cally important aspect of appearances, while leaving out another pro-minent 
aspect: that of the accuracy of vision (ßidq al-ru<ya).

In the selection above, the discussion of the appearance of visible pro-
perties other than what they really are, begins with the case of shapes, and the 
circular appearance of far rectangular objects, a problem that is, by itself, nota-
ble for the extensive and diverse explanations it had received beginning with 
the Greek sources. The author of the passage in the corpus Problemata Physica 
attributed to Aristotle, treats the case of a “square (tetravgwnon) [literally, a 
figure with four angles] that appears (faivnetai) to have sundry angles,” but 
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from a distance, “looks like a circle,”10 an effect that is explained in terms of 
the “cut-off ” shape of the angles owing to the uneven strength and distribu-
tion of rays within the base of the visual cone. There is also the proposition 
in Euclid’s Optics that orthogonal magnitudes (ojrqogwJnia megevqh) appear 
(faivnetai) circular from afar,11 with a “geometrical” proof based on the dis-
appearance of the object’s angles beyond a certain distance (i.e., where visual 
rays lose contact with objects).

In the Arabic tradition, various treatments of the problem before al-
Fåråb• include different versions of the same Euclidean proposition, starting 
with its supposed translation that “sight (baßar) by moving (yantaqil) from 
one point on the object’s outline to another, skips some points in between (må 
bayn).”12 Among other curious formulations, some emphasizing the temporal 
aspects of appearance and disappearance by pointing to angles as the first part 
of a figure to disappear,13 there is an apparently early treatment by A˙mad ibn 
>°så14 in his book on optics (Ó in Appendix), that is of interest on many levels. 
On one level, it is a “critique” of the Euclidean proposition on both physi-
cal and epistemological grounds, the assumption of the “leap” (†afra) of sight 
and the inability to perceive the figure’s real shape (al-shakl al-˙aq•q•) being 
called “the most amazing of amazements” (min a>jab al->ajab);15 on another 
level, geometrical demonstrations are offered for a variety of “angular” figures 
appearing as circles from a distance, demonstrations in which the “circle” itself 
is no longer conceived as a figure without angles, but rather, as a figure equi-
distant from its own center.16 

The treatment is also of interest beyond what was or was not available 
to an apparently early optical author such as A˙mad ibn >°så.17 In a book, bear-
ing the striking title of Kitåb al-Tarb•> wa al-tadw•r (Book of Rectangularity 
and Circularity), al-Jå˙iΩ (d. 255/868–869), the famous ninth-century literary 
figure and mutakallim, makes a number of relevant and revealing remarks, 
including the statement that: “if we say a quadrilateral structure is seen from 
a distance as circular, then perhaps the sun is polygon-shaped (mu∂alla>a) 
[mußallaba (cross-shaped) in the published edition)] and the stars are quadri-
lateral (murabba>a).”18 The addressee, a certain A˙mad ibn >Abd al-Wahhåb, 
whom al-Jå˙iΩ describes as “quadrilateral (murabba>) in form, but estimated 
as round (mudawwar) due to his figure!,” may be compared to A˙mad ibn >°så 
beyond an overlap of names and apparent intellectual orientations.19 If it is no 
incident that A˙mad Ibn >°så devotes exceptionally long and thorough discus-
sions in his Optics to the Euclidean proposition on the circular appearance of 
far rectangular objects, then, the problem of “the circle and the square” would 
take us much beyond questions of identity and onto the exciting milieu of the 
3rd/9th century itself.20 
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But for early Arabic optics, the problem of the appearance of shapes 
other than what they actually are, was not limited to the case of the circle and 
the square, just as the problem of “appearance” itself was not limited to the 
determination of its truth correspondence. Al-Kind• (d. ca. 257/870), himself 
the subject of attack by none other than al-Jå˙iΩ, focused, for example, on the 
case of the rectilinear appearance of circular shapes as part of his arguments 
against intromission in the De aspectibus (A in Appendix),21 and spoke, not so 
much of veracity of appearances, but rather, of clarity and accuracy of vision, 
using two distinct expressions: “clearer” (abyan) and “more accurate” (aßdaq) 
vision (ru<ya), in his later Taqw•m (Rectification), extant in Arabic22 (Q in 
Appendix).

“Clear” and “accurate” vision were, in fact, subjects treated extensively 
and variously by other authors on optics: in the period before al-Fåråb•, by Ibn 
>°så (before 250/846?), Óunayn ibn Is-˙åq (d. 264/877) and Qus†å ibn L¥qå 
(d. 300/912) in addition to al-Kind• (d. ca. 257/870,), and in the centuries fol-
lowing the composition of I˙ßå< al->ul¥m, by Ibn al-Haytham (d. ca. 432/1040), 
Naß•r al-D•n al-ˇ¥s• (d. 672/1274) and Kamål al-D•n al-Fåris• (d. ca. 718/ 
1318). And yet, of the two aspects of appearances that were prominent in the 
early optical tradition, namely veracity of appearances (as presented through 
the passages of Ibn >°så and al-Jå˙iΩ), and clarity and accuracy of vision (as 
developed through the transmission of another Euclidean proposition), it is the 
latter that is left out of al-Fåråb•’s account altogether, while the former occu-
pies a prominent place, not just in al-Fåråb•’s opening passage, but also in the 
one immediately following it.

II Justifiability and Variety of Demonstrations

I.2: “By means of this science discrimination (m-y-z) is made between what 
is seen (Ω-h-r) as different from what it truly is and what is seen (Ω-h-r) as it 
truly is; and the reasons (s-b-b) why all this should be so are established by 
certain (y-q-n) demonstrations. And with regard to all that can be subject to 
visual error (gh-l-†) this science explains various devices (˙-y-l) for avoiding 
error and apprehending what the seen thing truly is in respect to size, shape, 
position, order, and all that can be mistaken by sight (b-ß-r) . . .”

While the opening passage (I.1) is about the justification for having a 
science of optics as a separate branch from geometry (with which it shares 
its subjects: figures, magnitudes, order, position, equality and inequality), the 
second passage (I.2) is about the justifications offered by the science of optics 
itself: not only is this science one that discriminates (yumayyiz) between what 
literally “appears to sight” (yaΩhar f• al-baßar) according to its real (˙aq•q•) 
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properties and what does not; it is the science by which one establishes the 
reasons (asbåb) behind appearances (whether these are consistent with or at odds 
with real properties), and why they are as such (lima hiya) by means of “cer-
tain demonstrations” (baråh•n yaq•niyya). The explanation of various “devices” 
(˙iyal), this time for avoiding “errors (ghala†) of sight (baßar), with respect to 
size, shape, position, order, and all that may be subject to error” is, once again, 
expressed in terms of “coincidence with the truth” (yußådif al-˙aq•qa).

In specifying demonstrations as distinct forms of explanation with refer-
ence to appearances, the present passage well reflects aspects of the field that 
were central to the early optical tradition. Demonstrations were indeed among 
the key features of the science of optics; but these were expressed in terms 
that were much more specific than al-Fåråb•’s “certain” (yaq•n•) demonstra-
tions:23 Demonstrations (baråh•n)—often meaning mathematical proofs to an 
early figure such as al-Fåråb•—could be geometrical demonstrations (baråh•n 
handasiyya = demonstrationes geometricae), as referred to by al-Kind• in 
distinction from “philosophical demonstrations” (baråh•n falsafiyya); there 
were also such variations as “demonstrations by lines” (baråh•n khu†¥†iyya), 
in the words of Qus†å ibn L¥qå with specific reference to “the science of rays” 
(>ilm al-shu>å>åt), as there was the genre, “illustration” (mithål), itself used by 
someone like Ibn >°så, in the form of both “geometrical illustration” (mithål 
handas•) and “sensible illustration” (mithål ˙iss•). The latter pair, correspond-
ing to Ibn L¥qå’s “illustration by lines” (mithål khu†¥†•) and “sensible explana-
tion” (bayån ˙iss•) respectively, were to act as justification by means of textual 
proofs (in the first case), and experience-based setups (in the second case). 
But what best reveals the orientation of a wide range of explanations in early 
Arabic optics, is neither in the Galenic language of “demonstration by lines” 
(as found in book X of De usu partium), nor in the Euclidean language of geo-
metrical illustrations (as a formal division of a Euclidean proof), but rather, 
in the Aristotelian language of scientific reasoning (as set out in Aristotle’s 
Posterior Analytics).24

With the Aristotelian distinction between knowledge of fact (to; o{ti) and 
of the reason why (to; diovti) in a well-known passage in the Posterior Analytics 
(I.13: 78a34–35), and especially, the reservation of the privileged knowledge 
of the cause (or reasoned fact) for the mathematician, and the optician (with 
respect to inferior sciences), a method of providing “demonstrations” had 
found its way quickly into optical texts. The terminology of >illa after the Aris-
totelian expression for “knowledge by reasoning = to; diovti” (>ilm bi al->illa),25 
was accordingly more common in optics than the “demonstration” (burhån) 
of the Arabic title of Posterior Analytics (Kitåb al-Burhån), the text on which 
many authors on optics wrote commentaries, including al-Fåråb•.26 So central 
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was the process of reasoning to optics from early on, that the term >illa was 
even included in the full Arabic titles of a few early optical texts.27 

Discussions on demonstrative sciences in general, and optics in partic-
ular, were in fact transmitted through two Aristotelian works: The Posterior 
Analytics and Physics were both widely circulated in Islamic lands, through 
figures such as al-Kind•, Ibn L¥qå, and among al-Fåråb•’s (d. 339/950) own 
contemporaries, Abu ’l-Óasan al->Åmir• (d. 382/992), who all wrote on optics 
and on methodology in different forms and capacities: 28 Al-Kind•, charac-
terized optics as a “science in which geometrical demonstrations proceed 
in accordance with the requirements of physical things,” and supplemented 
geometrical demonstrations throughout his text with others from the world of 
experience.29 Qus†å ibn L¥qå, on the other hand, spoke explicitly about the 
“cooperation (ishtiråk) between natural philosophy, from which we acquire 
sense perception (idråk ˙iss•), and geometry and its demonstrations through 
lines (baråh•n khu†¥†iyya),” and about the incomparable “excellence of this 
coming together in the science of rays” (>ilm al-shu>å>åt). Ibn >°så similarly 
used, in addition to Euclidean illustration (mithål handas•), “sensible illustra-
tion” (mithål ˙iss•), with reference to devices like tubes (unb¥b).30 In this way, 
aspects of appearances that became subject to demonstrations often involved 
repeated demonstrations, typically supporting mathematically-based argu-
ments with experience-based set ups. The subjects of demonstrations them-
selves were focused more frequently on problems such as clarity or accuracy 
of vision, than the reality or veracity of appearances. 

The dominance of the subject of visual accuracy in the Arabic optical 
tradition may be measured by the abundance of demonstrations that involve 
quantified treatments of visual clarity in terms of the amount of radiation 
involved. Al-Kind•, who treats the subject in more than one place, demon-
strates geometrically that what determines the effectiveness of the central 
region of the visual field is the falling of the greatest amount of radiation on 
the central region.31 Other cases include demonstrations by Ibn L¥qå, where 
the amount of radiation falling on a region determines how many objects are 
seen, rather than how clear they are seen.32 In yet another variation by Ibn 
>°så, alternative demonstrations for the privileged position of the visual axis 
for “more accurate vision” (aßdaqu ru<yatan) is based on there being “more of 
the ray” falling (må waqa>a min al-shu>å> akthar).33 All these demonstrations 
(including those involving repetitions) are somehow related to the problematic 
transmission of Euclidean optics,34 which in this case amounts to a missing 
causal premise in the proposition demonstrating that “that on which more of 
the ray falls is seen more accurately” (må waqa>a >alayhi al-shu>å>u akthara fa 
ru<yatuhu aßdaqu).” 
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III Versatility and Fallibility of Applications

I.3: “By means of this art (ßinå<a) too, one can determine the size of distant 
and inaccessible bodies, the magnitudes of their distances from us and their 
distances from one another. Examples are: the heights of tall trees and walls 
and the widths of valleys and rivers; even the heights of mountains and the 
depths of valleys, provided that sight (b-ß-r) can reach (w-q->) their limits; the 
distances of clouds and other objects from our location and above any place 
on the earth . . . In general, every visible magnitude of which the size or dis-
tance from something else we seek to know, [can be determined] sometimes 
by means of instruments which are made for guiding the passage of sight 
(b-ß-r) so that it may not err, and sometimes without such instruments.”

The passage on the applications of optics as an art (ßinå>a) rather than 
its explanations as a science (>ilm) (I.3) points to an important, and often over-
looked, aspect of the discipline: The determination of the size and distance 
of objects was, just as the explanation of their appearance, an integral part 
of optics. In including among the applications of the manåΩir tradition (i.e., 
optics), the miså˙a problems, based on a set of four propositions in Euclid’s 
Optics (i.e., the “surveying” problems), al-Fåråb• acknowledges an aspect of 
the discipline that was far from marginal to the practices of early Arabic optics. 
But the absence of the one Euclidean proposition in that set where the deter-
mination of a magnitude involves the use of a plane mirror, gives al-Fåråb• no 
occasion to move from the discussion of instruments and errors to the more 
problematic aspects of each case, the mirror and the principle of reflection 
respectively. 

The omission is all the more surprising in the light of the thoroughness 
of al-Fåråb•’s account regarding the many applications of “the art” (ßinå>a). 
The inclusion of applications such as the determination of unknown heights, 
depths and lengths from known values through measurements and calculations 
is indeed close to the common practices of the discipline, both before and after 
al-Fåråb•, as is the extension of the objects and distances involved to include 
natural objects and far distances. A good example of an early work that com-
bined the methods of magnitude determination with principles in optics is a 
short treatise by Sinån ibn al-Fat˙ (ca. 4th/10th cent.) with the self-explana-
tory title of al-Miså˙åt al-manåΩiriyya (¸ in Appendix).35 Another text that 
extended its methods of magnitude determination to the case of natural objects 
and far distances, is a treatise by al-Kind•, entitled On Clarification of Finding 
Distances between an Observer and the Centers of Mountain Heights (Risåla f• 
°∂å˙ wijdån ab>åd må bayn al-nåΩir wa maråkiz a>madat al-jibål (W in Appen-
dix).36 Comparable works of a period slightly later than al-Fåråb• include two 
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short tracts bearing the name of Ibn al-Haytham (d. ca. 432/1040), an author 
much better known for his influential Optics (Kitåb al-ManåΩir):37 one is On 
the Determination of the Height of Upright Bodies, Mountains and Clouds 
(Maqåla f• Ma>rifat irtifå> al-ashkhåß al-qå<ima wa a>midat al-jibål wa irtifå> 
al-ghuy¥m), and the other, On the Extraction of the Elevation of Mountains 
(Qawl f• Istikhråj a>midat al-jibål).38

But the mißåha tradition had close associations, not just with the manåΩir 
tradition, most directly through the visual and solar rays involved in magnitude 
determinations; it also had direct links with the maråyå tradition, as it involved 
indirect forms of radiation, for example, through the Euclidean proposition 
involving a plane mirror for height determination. The close association is 
clear from a title such as Mir<åtiyya (Related to Mirrors), an alternative title 
for a treatise by Badr al-D•n al-ˇabar• (ca. 824/1421) called Height (Irtifå>),39 
in this case involving the determination of the height of lower objects, once 
by means of a “rod” (>am¥d), and once by a plane mirror. The late author of 
the Mir<åtiyya reveals a useful piece of information about the transmission of 
the methods involved, when he says that “regarding the determination of the 
height of tall objects by means of a mirror, what the people of the art (ahl-i-
ßinå>at) may have offered on the subject, has not reached him or has not been 
seen by him anywhere.” The curious omission of this aspect of the miså˙a 
tradition from al-Fåråb•’s extensive account of the “art,” may be related to the 
reportedly poor transmission of surveying techniques using mirrors; but this is 
something that must also be viewed in the light of other problematic cases in 
transmission.

The transmission of the Euclidean propositions on height determina-
tion by means of reflecting visual rays is a case that had already taken a mis-
directed course as a result of the Arabic terminology used for the principle of 
reflection from a plane mirror. In the Arabic version of that proposition, the 
term reflection was not translated into Arabic in the later standard form in>ikås, 
but rather, as in>i†åf, a form also employed by al-Fåråb• with reference to the 
deflection of rays at a polished surface such as mirrors, just as in both the early 
and late Arabic versions of Euclid’s Optics (3rd/9th and 7th/13th centuries 
respectively).40 The terminological twist is particularly surprising, because 
the more standard term for reflection (in>ikås) was used as early as in Óunayn 
ibn Is-˙åq’s Ten Treatises on the Eye, in the Arabic versions of the Pseudo-
Euclidean De speculis and Aetius’ Placita philosophorum,41 as well as in late 
works by ˇ¥s• and his commentator, ˇabar•.42 The exact source of al-Fåråb•’s 
combined formulation where “deflected” (mun>a†ifa) (i.e., reflected) rays 
become “reversed” (mun>akisa) (i.e., on their return paths from a mirror), is 
not quite clear. Neither does the extensive literature on the subject contain 
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frequent references to “bent” (munkasira) rays or to “seeing behind oneself,” as 
we find in al-Fåråb•’s next passage. 

IV Elements and Mechanisms of Vision

I.4: “Now all that can be looked at (n-Ω-r) and seen (r-<-y) is seen (r-<-y) 
by means of a ray (sh->->) that penetrates (n-f-dh) the air or any transpar-
ent body in contact (m-s-s) with our eyes (b-ß-r) until it reaches (w-q->) the 
object seen (n-Ω-r). And rays that pass through transparent bodies to a visible 
object are either straight (mustaq•ma) or deflected (mun>a†ifa) or reversed 
(mun>akisa) or bent (munkasira). Straight rays are those that, having issued 
(kh-r-j) from the eye, extend rectilinearly on the line (s-m-t) of sight (b-ß-r) 
until they weaken and come to an end. . . . Deflected rays are those that, hav-
ing passed out of the eye, meet on their way, and before they weaken, a mirror 
that precludes them from passing through in a straight line, thereby causing 
them to be deflected (>-†-f) and turned (˙-r-f) to one side of the mirror. They 
then extend in the direction into which they have turned towards the beholder 
(n-Ω-r). Reversed rays are those that return from the mirror on the path they 
traversed at first, until they fall (y-q->) on the body of the beholder (n-Ω-r) from 
whose eyes they have issued (kh-r-j), and it is by means of this [kind of] ray 
that the beholder (n-Ω-r) sees (r-<-y) himself. Bent rays are those that return 
from the mirror towards the beholder (n-Ω-r) from whose eyes (b-ß-r) they 
have issued (kh-r-j), but extend obliquely beside him until they fall (y-q->) 
on something else behind the beholder or on his right or his left or above 
him, and it is thus that we see (r-<-y) what lies behind or beside us.”

Al-Fåråb•’s detailed account of the elements and mechanisms of vision 
points to complex problems in transmission: the elements of vision, being in 
this case, the four cases of visual radiation, and the mechanisms, their respec-
tive features and functions. By containing explanations that clearly represent a 
combination of the various formulations of visual radiation and their distinct 
features and functions, the account well reflects the problematic nature of the 
theoretical aspects of the discipline. But by excluding some common formula-
tions, while including uncommon ones, the detailed account is still a faint 
reflection of the range and complexity of the problems characterizing the early 
Arabic optical tradition. 

Al-Fåråb•’s account may be considered primarily Euclidean, though it is 
neither identical with any of the two most common formulations of the Euclid-
ean visual-theory, nor comparable to any one particular variation to reveal the 
exact source of its own “mixed” formulations. Transmitted through a textual 
tradition, noted for having been not just problematic, but physically defec-
tive in both Greek and Arabic,43 the Euclidean tradition itself has a complex 
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history, beginning with the statement of the Euclidean visual-ray hypothesis. 
Of the two most distinct formulations of that statement passing under the name 
of Euclid,44 none are fully represented in al-Fåråb•’s version: “a ray (shu>å>) 
passing through (yanfudh) a transparent body in contact (yumåss) with our 
eyes (baßå<ir) until it falls (waqa>a) on the viewed object (manΩ¥r ilayh),” 
does not correspond exactly, with the elements and mechanisms of vision as 
described in the opening lines of the Arabic versions of Euclid’s Optics (Kitåb 
al-ManåΩir li-Uql•dis, M in Appendix), and largely followed in the late Arabic 
versions of the same text (i.e., ˇ¥s•’s Ta˙r•r al-ManåΩir and Ibn Ab• Jaråda’s 
Tajr•d al-ManåΩir); neither does it match the version found in the pseudo-
Euclidean De speculis (Kitåb al-ManåΩir li-Uql•dis, S in Appendix), the latter 
corresponding almost word by word, and only in this part, to the formulations 
of al-Kind•’s Taqw•m, and Ibn >°så’s al-ManåΩir wa al-maråyå al-mu˙riqa (Ó 
and Q in Appendix, respectively).45 

A critical part for the discussion of appearances, including al-Fåråb•’s 
distinct formulations, is the many forms of the third Euclidean assumption 
in the Optics that only those things upon which rays fall are seen (oJra`tai). 
It is not insignificant that the corresponding Arabic verb for “seeing” is, 
in the Optics (M), yubßar, in the De speculis (S) yudrak and in al-Fåråb•’s 
account, yunΩar and yurå: “All that can be looked at (yunΩar ilayh) and seen 
(yurå),” states al-Fåråb•, “is seen (yurå) by means of a ray (shu>å>) that . . . 
falls (waqa>a) on the viewed object (manΩ¥r ilayh).” It is clearly the case that 
al-Fåråb•’s formulation is free from the occurrence of the terminology of per-
ception (idråk), a conception that appears in similar terms in the statements of 
predecessors like al-Kind•, Ibn >°så, and Ibn L¥qå (as part of their reformula-
tion of the third Euclidean definition), as well as the subsequent elaborations 
of Avicenna and Ibn al-Haytham.46 In the case of direct vision, therefore, al-
Fåråb•’s account of “appearances” remains partial by virtue of being strictly 
Euclidean. This is a tradition in which various expressions occur for both the 
passive and active modes that are involved in vision [what is viewed (yunΩar), 
looked at/seen (yubßar), or appears (yaΩhar); and what is seen (yurå), thought 
to be seen (yuΩannu annahu yurå), or imagined to be seen (qad yutawahhamu 
an yubßar)], with the similarly striking exception of the term for perception 
(idråk). 

The Euclidean character of al-Fåråb•’s account of indirect vision repre-
sents restrictions in other theoretical directions. This time, what is striking is 
the absence of any reference to vision through refraction.47 In the part of the 
passage on appearances through mediums (i.e., indirect vision) rather than 
those through air (i.e., direct vision), everything—including the term “in>i†åf ” 
(later, standard for refraction)—is a reference to reflection: visual radiation 
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passes out of the eye (nåfidh min al-baßar) . . . meets a mirror (al-mir<åh), is 
deflected (tan>a†if) and turned (in˙arafat) to one side of the mirror; and then, 
the reversed (mun>akisa) rays return (tarji >) from the mirror on the path they 
first traversed. Clearly, al-Fåråb•’s account, where al-shu>å>åt al-mun>a†ifa 
stand for deflected rays (as in the Arabic Euclidean tradition), next to non-
Euclidean cases such as reversed (mun>akisa) or bent (munkasira) rays, lacks 
mention of refracted rays in its most standard form. And when we read in the 
closing passage that >ilm al-maråyå is the division within >ilm al-manåΩir that 
investigates what is visible through indirect (ghayr al-mustaq•ma) rays, this 
does not include refracted rays as the reference to transparent mediums such as 
water or glass would have us believe.

V The Modes and Mediums of Operation

I.5: “The medium that lies between the eye (b-ß-r) and what is looked at 
(n-Ω-r) is, in general, a transparent body, whether air, or water, or celestial 
body or an earthly composite body such as glass and the like. And mir-
rors, which send back the rays and prevent them from rectilinearly passing 
through, are either those made by us of iron or the like, or they consist of a 
thick moist vapour, or water, or some other body similar to these. The sci-
ence of optics, then, inquires into all that is looked at (n-Ω-r) and seen (r-<-y) 
by means of these four rays {straight (mustaq•ma), deflected (mun>a†ifa), 
reversed (mun>akisa), and bent (munkasira)} and into every kind of mirror 
and all that pertains to the object of vision (n-Ω-r). It is divided into two 
parts, the first of which investigates what is visible (n-Ω-r) through rectilinear 
rays, and the second is visible through non-rectilinear rays, and this [latter] 
is specially called the science of mirrors (>ilm al-maråyå).”

The closing passage (I.5) concludes with optics’ domains of inquiry 
(fa˙ß), as distinct from the subjects of investigation of the opening lines (I.1) 
that were meant to make optics itself distinct from the “more general” field 
of geometry. In extending the discussion of indirect or mediated appearances 
(introduced in the previous passage), to cases involving reflecting surfaces 
other than mirrors (thick moist, vapor, or water) on the one hand, and medi-
ation of transparent bodies other than air (“water, celestial sphere and earthly 
composite bodies like glass and the like”) on the other, the final passage pro-
vides a faithful account of mediated appearances, insofar as it distinguishes 
between mediation through opaque bodies (such as mirrors) and transparent 
bodies (water or glass). But insofar as the passage includes one type of medi-
ted appearance (through reflection) to the exclusion of the other (through 
refraction), the account does not fully represent the stage reached by optical 
writings of the period before or during al-Fåråb•’s compositions.
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The two-fold and hierarchical division of the discipline, the first (>ilm 
al-manåΩir) investigating what is viewed (yunΩar ilayh) through direct 
(mustaq•ma) rays, and the second, through indirect (ghayr mustaq•m) rays, 
must itself be understood in terms of the mediums—and not just modes—of 
propagation. On the one hand, mustaq•ma and ghayr mustaq•ma represent 
direct (= unmediated) and indirect (= mediated), rather than rectilinear and 
non-rectilinear (i.e., in terms of a medium of propagation other than air, rather 
than the rays being in the mode of rectilinearity), simply because the rays 
involved in appearances through a mirror, for example, are both rectilinear (= 
not bent or curved) and indirect (= changing course), this being true of both 
deflected (mun>a†ifa) and reversed (mun>akisa) rays. On the other hand, the 
part, maråyå in >ilm al-maråyå, itself commonly translated as “the science of 
mirrors,” can neither be reduced to mirrors, nor understood to exclude surfaces 
now commonly considered refractive mediums, especially since al-Fåråb•’s 
maråyå stands for “deflecting” surfaces such as vapor or water thick enough to 
produce such an effect. 

The limited knowledge of optical refraction in general and of the 
treatment of enlarged objects in water in particular has long been noted by 
A. I. Sabra with reference to specific works by al-Kind•, A˙mad ibn >°så, even 
early Ibn al-Haytham (d. ca. 432/1040), for their lack of understanding of the 
phenomenon of refraction as found already in Ptolemy’s Optics.48 Ironically 
enough, the so-called “pre-Ptolemaic” stage represented by the astronomer’s 
explanations of the enlarged appearance of bodies through mediums in terms 
of visual angles, is, in some sense, more advanced than the stage represented 
by the optical tradition itself, a tradition where the appearance of the principle 
of reflection in a single proposition of Euclidean optics came and circulated 
with the vocabulary of in>i†åf to “confuse” the phenomena of reflection and 
refraction in the works of Naß•r al-D•n al-ˇ¥s• (d. 672/1274) and Qu†b al-D•n 
al-Sh•råz• (d. 711/1311), and all the way up to Kamål al-D•n al-Fåris• (d. 718/
1318) who noted the puzzles involved.49 

The nonstandard terminology of “in>i†åf” as “reflection” (or reflection) 
has already been mentioned with reference to the part of al-Fåråb•’s previous 
passage (I.4), where deflected (mun>a†ifa) rays appear alongside the standard 
form mun>akisa, itself used to mean reversed, rather than reflected rays (i.e., the 
returned rays on the same path of incidence). That the applications of the two 
principles remained inconsistent is immediately clear from the relevant writ-
ings of a late author such as ˇ¥s•: in his short treatise, In>ikås al-shu>å>åt wa 
in>i†åfuhå, where the two terms are used jointly (and in some manuscript tran-
scriptions, also interchangeably), as well as in the Persian work, Shu>å>, the word 
“in>ikås” is used for reflection, while in ˇ¥s•’s Ta˙r•r al-ManåΩir (Recension 
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of Euclid’s Optics), the form in>i†åf (by then, standard for refraction) is still 
the term used for reflection from a mirror; this is all the more curious, because 
in>i†åf appears in the first of these works as a form of refraction a cone of rays 
undergoes at the surface of transparent bodies like still water, so that “zåwiyat 
al-in>i†åf” is no longer ˇ¥s•’s “angle of deflection” at the surface of polished 
bodies such as mirrors (as in the Ta˙r•r), but rather, the angle that the refracted 
end of the visual cone makes with the refracting surface, and in such a way that 
it is still equal with the angle of incidence (zåwiyat al-shu>å>).50 

With the treatment of refraction, in particular, the confusion between 
the principles of reflection and of refraction, and especially their nonstandard, 
inconsistent, and orthographically comparable terminology, are factors to be 
considered, in addition to the apparently poor transmission and circulation of 
Ptolemy’s relevant treatments. The important statement of A. I. Sabra about 
all the historical evidence pointing to the limited use of Ptolemy’s Optics in 
both Antiquity and the Islamic Middle Ages,51 must then be combined with 
no less qualified statements that would also take into account, not just what 
was transmitted, but also how whatever did get transmitted was transmitted. 
The difficulty is that historical evidence may successfully reveal the first (the 
what of transmission), but not all historical evidence would reveal the second 
(its how). In the case of early Arabic optics, we are fortunate to have a good 
number of texts, including al-Fåråb•’s passage, that may still act as histori-
cal documents, to determine what sources or concepts, were transmitted up to 
about the year AD 950. But it takes a close examination of the available sources 
from the perspective of the transmitted terms and expressions, in addition to 
the sources and concepts, and these through extant manuscripts in addition to 
published editions, to determine the exact nature and manner of the effect that 
all of these have had on the state of Arabic optics during a critically important 
stage in its development.

To conclude with remarks that take into account the entire passage and 
overall plan of the optics section in al-Fåråb•’s Catalogue, it should be remem-
bered how optics is presented throughout that text: as an established scientific 
discipline (>ilm) within the mathematical sciences (ta>ål•m), supplied not just 
with “reasons” (asbåb) but “certain” (yaq•n•) demonstrations, and not just 
with “explanations” (ma>rifa) but also “devices” (˙iyal), a discipline in search 
of “conformity with reality” (yußådif al-˙aq•qa), one that at once demystifies 
and justifies “what appears to sight” (må yaΩhar f• al-baßar) both within and 
beyond the ordinary realms of vision. All this leaves little doubt about how al-
Fåråb• conceived of, or at least presented, the “program” of the early optical 
tradition. 
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But how close is such a “program” to the character of the early opti-
cal tradition itself? There is no question that al-Fåråb•’s account is extremely 
valuable as a historical document, especially in the light of the rarity of such 
general accounts on the early history of any scientific discipline; but with the 
focus of the text on disciplinary and pedagogic concerns, rather than histori-
cal, or even scientific ones, the coverage of the “science of aspects,” remains 
inexhaustive, in regards to the many aspects of the field, in terms of both the 
orientations and associations of the discipline, and the forms and expressions 
of its concepts. Appearances are treated, in the opening passage, in terms of 
problems of veracity to the exclusion of the slightly different, and more com-
mon, themes of clarity and accuracy; in the second passage, in terms of dem-
onstrations to the exclusion of their sense-perceptible dimensions; in the third 
passage, in terms of applications to the exclusion of their more problematic 
extensions; in the fourth passage, in terms of the elements and mechanisms of 
vision to the exclusion of their multiple variations; and finally in the closing 
passage, in terms of modes of investigation to the exclusion of all the modes 
and mediums of operation. The terminological aspects of appearances are also 
at once reflective and restrictive, as the concept of “appearance” itself emerges 
from the active involvement of an observer (nåΩir) viewing (n-Ω-r) or seeing 
(r-<-y), to the passive presence of an object appearing (Ω-h-r)—all to the exclu-
sion of other forms, including the form al-manåΩir, meaning appearances (and 
not just visual rays), as in the “science of aspects” (>ilm al-manåΩir) itself. 

Finally, the few extant early Arabic texts examined in the present study, 
themselves act as important historical documents in demonstrating that it is not 
only the case that al-Fåråb•’s coverage of “aspects” and “appearances,” is not 
fully representative of the concepts and problems of the early Arabic texts often 
covering the very same items; it is also the case that such a coverage, leaves 
out, in effect obscures, the extremely complex character of an early tradition, 
to whose “unsettled” aspects, as well as rich dimensions, al-Fåråb•’s account 
itself is sufficient testimony. 
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Appendix

Primary Sources within the Early Arabic Optical Tradition

M =كتابٹأقليدسٹفىٹاختلافٹالمناظرٹ
Kitåb Uql•dis f• Ikhtilåf al-manåΩir = Euclid’s Optics (Arabic version) 
[Krause (1974); Sezgin (1974) = GAS V; Kheirandish (1991, 1996). ed. 
Kheirandish (1999): vol. 1: pp. 1–225; Rashed (1997)].

S =كتاب المراءىٹلأوقليدسٹ
Kitåb al-Mir<åh li-Uql•dis = [Pseudo-] Euclidean De speculis (Arabic ver-
sion) [Sabra (1979); Kheirandish (1991, 1999); Rashed (1997); Latin text: 
Björnbo and Vogl (1900), pp. 97–173; Theisen (1972)]. 

Ó =كتابٹالمناظرٹوالمراياٹالمحرقهٹ
ٹ )تأليفٹأحمدٹبنٹعيسىٹعلىٹمذهبٹأقليدسٹفىٹعللٹالبصر(

A˙mad ibn >°så, Kitåb al-ManåΩir wa al-maråyå al-mu˙riqa ta<l•f A˙mad 
ibn >°så >alå madhhab Uql•dis f• >ilal al-baßar (Arabic text) [Krause 
(1936); Kheirandish (1991, 1996, 1999; Sabra (1989); Rashed (1997), in-
cludes edition of section on Burning Mirror, Sabra and Kheirandish, edi-
tion in preparation].

Q =كتابٹأبىٹيوسفٹيعقوبٹبنٹإسحاقٹالكندىٹإلىٹبعضٹإخوانہٹ
ٹ فىٹتقويمٹالخطأٹوالمشكلاتٹالتىٹلأوقليدسٹفىٹكتابهٹالموسومٹبالمناظر
 Al-Kind•, Kitåb Ab• Y¥suf Ya>q¥b ibn Is˙åq al-Kind• ilå ba<∂ ikhwånihi f• 

Taqw•m al-kha†a< wa al-mushkilåt allat• li-Uql•dis f• Kitåbihi al-maws¥m 
bi al-NåΩir [al-ManåΩir] (Arabic text) [Mar >ash• (v. 19); Rashed (1997), 
ed. pp. 162–335].

A =كتابٹفىٹعللٹاختلافٹالمناظرٹوالبراهينٹالهندسيةٹعليها?ٹ
Al-Kind•, De aspectibus (= Ikhtilåf al-manåΩir?) (Arabic text extant 
in Latin) Kitåb f• >Ilal ikhtilåf al-manåΩir wa al-baråh•n al-handasiyya 
>alayhå? = De causis diversitatum aspectus et dandis demonstrationibus 
geometricis super eas). [Björnbo-Vogl (1912); ed. Hugonnard-Roche, tr. 
Jolivet, Sinaceur: Rashed (1997)].

L =كتابٹفىٹعللٹماٹيعرضٹفىٹالمراياٹمنٹاختلافٹالمناظرٹ
Qus†å ibn L¥qå, Kitåb f• >Ilal må ya>ri∂u f• al-maråyå min ikhtilåf al-
manåΩir allafahu . . . Qus†å ibn L¥qå al-Y¥nån• (Arabic text) [Gulch•n 
Ma>ån• (1350=1971), vol. 8; Toomer (1976); Kheirandish (1991, 1996, 
1999); Rashed (1997), ed. pp. 572–646].
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W =رسالةٹيعقوبٹبنٹاسحقٹالكندىٹفىٹايضاحٹوجدانٹأبعادٹماٹبينٹالناظرٹ
ٹ ومراكزٹأعمدةٹالجبالٹوعلوٹأعمدتهاٹوعلمٹعمقٹالآبارٹوعروضٹالأنهارٹوغيرذلكٹ

Al-Kind•, F• °∂å˙ wijdån ab>åd må bayn al-nåΩir wa maråkiz a>midat al-
jibål wa >uluww a>midatihå . . . wa huwa yusammå M¥r•s†us. (Arabic text) 
[Ritter and Plessner (1932); Krause (1936); Brockelmann (1937) = GAL 
S I; Kheirandish (1991, 1999)].

المساحاتٹالمناظريہٹ= ¸
Sinån ibn al-Fat˙, al-Miså˙åt al-manåΩiriyya (Arabic text) [King (1986a) 
= Cairo Catalogue, v. 2, p. 1030; King (1986b) = Cairo Survey, p. 39; 
Sezgin, (1979), GAS VII; Kheirandish (1991, 1999)].

NOTES

1. Al-Fåråb•, Ab¥ Naßr, I˙ßå< al->ul¥m, ed. >Uthmån Am•n [= Osman Amine], Cairo: 
Librairie Anglo-Égyptienne, 1968 [earlier editions, Cairo, 1931, 1949; Arabic edi-
tion from Escorial manuscript by A. González Palencia, Alfarabi Catálogo de las cien-
cias (ACLS), includes two medieval Latin and a modern Spanish translation (Madrid, 
1932)].

2. The English translation of the full passage is quoted from A. I. Sabra’s The Optics 
of Ibn al-Haytham: Books I–III On Direct Vision, Translated with Introduction and 
Commentary, 2 vols., Warburg Institute, 1989, vol. 2, pp. lvi–lvii. The translation is 
described by Sabra as “made from a composite text constructed from two editions of 
the Arabic text and the Latin version . . . in the absence of a single satisfactory edi-
tion” (emphasis and verbal root indications are added to passages quoted in this chapter 
by the present author). An earlier English translation of a large part of the same pas-
sage based on the Arabic edition in ACLS (and using the Cairo edition) is published as 
“The Science of Aspects” in Marshall Clagett, “Some General Aspects of Physics in the 
Middle Ages,” Isis, 1948, 39: 29–44, pp. 32–35.

3. The section “Aim and Scope of The Optics” in Sabra’s The Optics of Ibn al-Haytham, 
vol. 2, pp. liii–lxiii, contains discussion of this and other key passages.

4. Kheirandish, Elaheh, The Arabic Version of Euclid’s Optics: Kitåb Uql•dis f• Ikhtilåf 
al-manåΩir, Edited and Translated with Historical Introduction and Commentary, 2 
volumes, Springer-Verlag: Sources in the History of Mathematics and Physical 
Sciences, no. 16, 1999; also, “The Arabic ‘Version’ of Euclidean Optics: Transformations 
as Linguistic Problems in Transmission,” Tradition, Transmission, Transformation: 
Proceedings of Two Conferences on Pre-modern Science Held at the University of 
Oklahoma, ed. F. Jamil Ragep and Sally P. Ragep with Steven Livesey, Leiden: Brill, 
1996: 227–243.

5. Kheirandish, Elaheh, The Arabic Version of Euclid’s Optics, 2 volumes, Springer-
Verlag, 1999 (see above); also, “The ‘ManåΩir’ Tradition through Persian Sources,” Les 
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sciences dans le monde iranien, ed. ˛. Vesel, H. Beikbaghban et B. Thierry de Crussol 
des Epesse, Tehran: Institut Français de Recherche en Iran (IFRI), 1998: pp. 125–145.

6. Some aspects of appearances are discussed with reference to the Greek and Latin 
traditions: appearance versus visual perception, by C. D. Brownson in “Euclid’s Optics 
and Its Compatibility with Linear Perspective;” vision versus reality, by Vasco Ronchi 
in “Classical Optics is a Mathematical Science;” image reception versus perception, 
by Richard Tobin in “Ancient Perspective and Euclid’s Optic;” objective and subjective 
elements in vision, by Gérard Simon in “The Notion of the Visual-Ray,” by Wilfred R. 
Theisen in The Mediaeval Tradition of Euclid’s Optics, and by Kim Veltman in Optics 
and Perspective: A Study in the Problems of Size and Distance, see Bibliography.

7. On the general and specific senses of the plural manåΩir as well as the singular forms 
manΩar and manΩara with examples from relevant literature; see Sabra, “ManåΩir, or 
>Ilm al-manåΩir,” EI2 6, p. 376 and Sabra, “Ibn al-Haytham,” DSB, 4, p. 203, n. 9; 
see also, Kheirandish, The Arabic Version of Euclid’s Optics, vol. 2, Index of Arabic 
Terms.

8. See ed. Am•n, pp. 79–83, tr., Sabra, The Optics of Ibn al-Haytham, v. 2, pp. lvi–lvii 
and Kheirandish, The Arabic Version of Euclid’s Optic: Index of Arabic Terms.

9. The exclusion is noted by Sabra, The Optics of Ibn al-Haytham, vol. 2, p. lviii.

10. The full passage in the facing translation of the Loeb edition is as follows: “Similar 
to this is the phenomenon that a square appears to have sundry angles, but if we stand 
farther off it looks like a circle. For as the fall of the rays is in the form of a cone, when 
the figure is removed to a distance, those rays that are at the angles are cut off and do not 
see anything because they are weak and few, when the distance grows greater, but those 
that fall on the center persist because they are collected together and strong. When the 
figure is near they can see also the parts at the angles, but when the distance becomes 
greater they cannot,” Problems, bk. XV, 911b19–21, Loeb edn., p. 335. The Arabic ver-
sion is now available in the edition of L. S. Filius: The Problemata Physica Attributed to 
Aristotle, The Arabic Version of Óunain ibn Is˙åq and the Hebrew Version of Moses ibn 
Tibbon, Aristoteles Semitico-Latinus, Leiden: Brill, 1999, pp. 658–659.

11. Heiberg, J. L., Euclidis Optica, Euclidis Opera Omnia, ediderunt J. L. Heiberg et H. 
Menge, vol. VII, Leipzig: Teubner, 1895, pp. 16 and 166.

12. Kheirandish, The Arabic Version of Euclid’s Optics, vol. 1, pp. 30–34, vol. 2, pp. 
44–48.

13. There is a statement in the margin of one variant of the early Arabic version, 
where a circle is also defined as “a figure for which there are no angles,” as well as in 
ˇ¥s•’s recension of that proposition, that act as alternative causal premises that this is 
“because (li-anna) the smallest parts of an object (namely angles) are the first to disap-
pear (yagh•b) from sight (>an al-baßar) at a far distance. Ibn al-Haytham’s explanation 
of “why a polygonal (mu∂alla>) figure is perceived to be circular (mustad•r),” treats the 
problem with the terminology of the concealment (khafå<) of the angles owing to their 
relative smallness (ßighar) at a distance (bu>d): Kitåb al-ManåΩir, bk. III, sec. 9, ed. 
Sabra, p. 416; tr. Sabra, vol. 1, p. 281. The Arabic version of Ptolemy’s Optics, which 
contains such a problem, has not reached us for specific or linguistic comparisons; for 
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the Latin version based on Arabic, see Lejeune, L’Optique de Claude Ptolémée, 1956, 
1989. 

14. Max Krause, who first reported the two Arabic manuscripts of Ibn >°ßå’s Optics 
and Burning Mirrors (Kitåb al-ManåΩir wa al-maråyå al-mu˙riqa) [Ó in Appendix], 
dates it as “before 250H” (= 864 A.D.) without further specification: “Stambuler 
Handschriften islamischer Mathematiker,” pp. 513–514; A. I. Sabra, elaborates on 
Krause’s “conjecture” by noting the “peculiar vocabulary” of the text and its lack of 
any mention of Arabic authors alongside Greek authors: The Optics of Ibn al-Haytham, 
vol. 2, p. xxxvii, and n. 39; Roshdi Rashed, who includes part of the text in a recent 
publication (Œuvres Philosophiques et Scientifiques d’Al-Kind•, vol. I: L’Optique et la 
Catoptrique in Islamic Philosophy Theology and Science, Texts and Studies edited by 
H. Daiber and D. Pingree, vol. xxix), insists that the text is a “relatively late” compila-
tion preserving some works by al-Kind•, and that the “discretion” with regard to naming 
Arabic authors is “deliberate,” Œuvres Philosophiques et Scientifiques d’ Al-Kind•, vol. 
1, pp. 57–60, see also note 17 below. 

15. The full passage is as follows: “Euclid said in his book Ikhtilåf al-manåΩir that fig-
ures having angles, like a quadrilateral (murabba>), are seen from a certain distance as 
circular (mustad•r), so if they become distant from the eye they are seen (yurå) as round 
(mudawwar)”. . . this is “the most amazing of amazements” (a>jab al->ajab) because if 
it is in the nature (†ab>) of sight (baßar) to make a leap (†afra) and see a quadrilateral 
object from a distance as round, then as a result of that leap the object’s real (˙aq•q•) 
shape is not seen . . . : Ó [see Appendix]. The reasoning (>illa) offered follows in a much 
clearer text (note that the term †afra is not in the Arabic proposition of Euclid).

16. The geometrical demonstration shows that if from the center of the quadrilateral 
figure a line is drawn perpendicularly such that there is a point from which the excess 
(fa∂l) of lines connecting the figure’s center to its far corner, and to the middle of its 
sides is not a sensible magnitude (qadr ma˙s¥s), then from that point the figure is seen 
as circular. In contrast to other explanations of this visual effect based on the charac-
terization of a circle as a figure with no angles, this proof is based on the conception of 
a circle as a figure having all its points equidistant from a center. The definition of circle 
in Euclid’s Elements is “a plane figure contained by one line such that all the straight 
lines falling upon it from one point among those lying within the figure are equal to one 
another”: see Heath, The Thirteen Books of Euclid’s Elements, book 1, vol. 1, p. 153.

17. At the present state of research, it is difficult to determine the exact dates of A˙mad 
Ibn >°så, a name with no few occurrences in historical records (12 in the list of al-
Íafad•’s alone, see Kitåb al-Wåf• bi al-wafayåt, v. 7, ed. I˙sån >Abbås, Wiesbaden, 1389 
= 1969, pp. 271–275). There is no concrete evidence for considering Ibn >°så’s Optics 
as “pre 250/864” with Krause, though the content certainly points to an early date of 
composition; nor is there conclusive evidence for considering the text as a post al-Kind• 
“compilation” with Rashed, since with corresponding passages in particular, the chron-
ological arrow may go either way; see note 14 above. 

18. Mu∂alla>a (مضلّعه) makes more sense than mußallaba (مصلبّه = cross-shaped) in 
Pellat’s edition (treated as such also in Adad’s French translation), see Kitåb al-Tarb•> 
wa al-tadw•r, ed. Pellat, p. 91 (tr. Adad, p. 308). 
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19. On a character whose name, dates and intellectual orientations are comparable to 
both the author of the optical text and the target of al-Jå˙iΩ’s text, see the article under 
A˙mad ibn >°så (d. 247/861) by Madelung in the Encyclopaedia of Islam: EI2, Suppl., 
pp. 48–49. The article is about a sh•>• scholar and leader associated with the early 
Abbasid court.

20. For a flavor of the early periods of intellectual activity and the rivalries involved, see 
Gerhard Endress, “The Circle of Al-Kind•: Early Arabic Translations from the Greek 
and the Rise of Islamic Philosophy,” The Ancient Tradition in Christian and Islamic 
Hellenism (Gerhard Endress and Remke Kruk, eds.), Leiden: Research School CNWS, 
1997.

21. Alkindi, Tideus und Pseudo-Euklid: Drei optische Werke, herausgegeben und erklärt 
von A. Björnbo und Sebastian Vogl, Abhandlungen zur Geschichte der mathematischen 
Wissenschaften, Leipzig/Berlin, 1912, 26, 3: 1–41; In Lindberg, Theories of Vision, ref-
erence is made to al-Kind•’s use of this proposition for his refutation of the intromission 
theory: “If sight occurred through intromission of the forms of visible things, he [i.e., 
al-Kind•] argues, a circle situated edgewise before the eye would impress its form in the 
eye and consequently would be perceived in its full circularity;” see p. 23; for the con-
text of discussion and the relevant references, see pp. 22–24, pp. 223–224, n. 23–27.

22. Taqw•m al-kha†a< wa al-mushkilåt allat• li-Uql•dis f• Kitåbihi al-maws¥m bi al-
NåΩir [al-ManåΩir], Qum MS.: Mar<ashi-yi Najaf• 7580, 69b-102b, 960H (unique?), ed. 
Rashed, Œuvres Philosophiques et Scientifique d’ Al-Kind•, vol. 1, pp. 162–335.

23. On the methodological aspects of optics, see Kheirandish, “The Mixed Mathema-
tical Sciences of the Islamic Middle Ages,” The Cambridge History of Science, 8 vols. 
ed. David C. Lindberg and Ronald Numbers; vol. 2: The Middle Ages, forthcoming.

24. See respectively: Galen, De usu Partium, English translation: On the Usefulness of 
the Parts of the Body: Translated from the Greek with an Introduction and Commentary, 
by Margaret T.May, 2 vols., Ithaca: Cornell University Press, 1968–1969, Arabic trans-
lation: Kitåb al-Manåfi> al-a>∂å<, Bibliothèque Nationale: MS ar. 2583; Euclid’s 
Elements of Geometry, English translation: The Thirteen Books of Euclid’s Elements, 
second edition (revised with additions) Thomas, L., Heath, 3 vols, Cambridge: Cam-
bridge University Press, 1926 (Dover, 1956), especially, “The Formal Divisions of a 
Proposition,” vol. 1, pp.117–131; Aristotle, Posterior Analytics, edited by G. P. Goold, 
with an English translation by Hugh Tredennick (Cambridge: Harvard University Press, 
London: William Heinemann Ltd., 1976); Arabic version, Kitåb al-Burhån min Man†iq 
Aris†¥, ed. A. Badawi (Cairo: Dår al-Kutub al-Mißriyya, 1949), Islamica VII, part 2, 
309–465.

25. Aristotle, Kitåb al-Burhån, ed. A. Badawi, Organon Aristotelis in version Arabica 
Antiqua, Part 2, pp. 349–353; on the distinction, see also Ragep, Naß•r al-D•n al-ˇ¥s•’s 
Memoir on Astronomy, p. 386, and Crombie, Robert Grosseteste and the Origins of 
Experimental Science, pp. 25–26, and pp. 53–54.

26. Al-Fåråb•, Kitåb al-Burhån, ed. M. Fakhry, Beirut: Dår al-Mashriq, 1986. For 
the commentaries, see Peters, F. E., Aristoteles Arabus: The Oriental Translations and 
Commentaries on the Aristotelian Corpus (Leiden: E. J. Brill, 1968), pp. 17–19.
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27. Kitåb f•hi al-ManåΩir wa al-maråyå al-mu˙riqa ta<l•f A˙mad ibn >°så >ala mad-
hhab Uql•dis f• >ilal al-baßar; Kitåb f• >Ilal må ya>ri∂u f• al-maråyå min ikhtilåf 
al-manåΩir <alifahu (Qus†å ibn L¥qå al-Y¥nån•), Arabic texts and French translations in 
Roshdi Rashed, Œuvres Philosophiques et Scientifiques d’ Al-Kind•, vol.1, p. 649 (in-
cludes only the section on Burning Mirrors), and pp. 572–646 respectively (Ó and L in 
Appendix); and Kitåb f• >Ilal ikhtilåf al-manåΩir ma>a al-baråh•n al-handasiyya lahå (a 
likely form for the original title of al-Kind• De causis diuersitatum aspectus et dandis 
demonstrationibus geometricis super eas, better known as De aspectibus), ed. Björnbo, 
in A. Björnbo and S. Vogl, “Alkindi, Tideus und Pseudo-Euklid: Drei optische Werke,” 
Abhandlungen zur Geschichte der mathematischen Wissenschaften, Leipzig/Berlin, 26 
(1912), 3, pp. 1–41, tr. J. Jolivet, H. Sinaceur, H. Hugonnard-Roche, in Rashed, Œuvres 
Philosophiques et Scientifiques d’Al-Kind•, vol. I, p. 437.

28. On the commentaries, see Peters, Aristoteles Arabus, pp. 17–19 and 30–31 respec-
tively. On al->Åmir•’s al-Qawl f• al-Ibßår wa al-mubßar (Discourse on Vision and Visual 
Objects), see Khal•fåt (ed.), Raså<il-i Abu al-Óasan-i >Å�mir• bå muqaddamih va taß˙•˙-
i Sa˙bån Khal•fåt, tarjumih-i muqqadamih, Mihd• Tadayyun, Tehran: Markaz-i Nashr-i 
Dånishgåh• (University Publications), 1375=1996 [earlier edition, Raså<il Ab• al-Óasan 
al->Åmir• wa-shadharåtuhu al-falsaf•yah: diråsah wa-nuß¥s, Amman: al-Jåmi>ah al-
Urdun•yah, 1988]; for references relevant to optics, see Kheirandish, The Arabic Version 
of Euclid’s Optics, vol. 1, pp. xlvi, lviii, vol. 2, p. 13, p. 17. 

29. Al-Kind•, De aspectibus, ed. Björnbo, p. 1.

30. Kheirandish, The Arabic Version of Euclid’s Optics and “The Mixed Mathematical 
Sciences of the Islamic Middle Ages;” Sabra, The Optics of Ibn al-Haytham, vol. 2, 
pp. 25–26.

31. De aspectibus, sec. 12, 14, 22, ed. Björnbo, pp. 17–19, p. 24; sec. 22, and pp. 37–
39. The clarity of a close object is discussed in terms of the strength of its illumination, 
which is enhanced by proximity to the visual axis, in the wording of De aspectibus: 
“illumination in many parts (plures partes) and from all sides;” and in Taqw•m, ed. 
Rashed, p. 171, as “whatever is under more intense illumination (n¥r al-shad•d) is seen 
more clearly (turå abyan) and so more accurately (aßdaq).

32. Qus†å ibn L¥qå, F• >Ilal (L), p. 6: “If one ray falls (yaqa>u) upon an object, it is seen as 
one, if two rays fall, it [the object] is seen as two (ra<å ithnayn), and if more than two rays 
(aktharu min shu>å>ayn) fall, it is seen as more than two (ra<å akthara min ithnayn).” 

33. For the relevant passage in Ibn >°så’s Ó [see Appendix], see Sabra’s related discus-
sions in The Optics of Ibn al-Haytham, v. 2, pp. 25–26. Another passage in Ó contains 
the interesting combination that “whatever is seen by a large angle is seen as larger 
(a>Ωam) and its vision is more accurate (aßdaqa ru<yatan).”

34. In the second proposition of the Optics, for example, the Arabic translation of the 
Euclidean vocabulary of visual clarity (ajkribevsteron) as visual accuracy (ßidq al-
ru<ya), along with the problematic form kathra used for the concept of clarity in the 
seventh Euclidean definition, gives rise to a range of treatments, see Heiberg, Euclidis 
Optica, p. 4 and p. 156; Kheirandish, The Arabic Version of Euclid’s Optics, vol. 1, p. 
and p. 156, and vol. 2, pp. 30–34: see also def. 1–4, and Prop. 1, 3, 9, 23.
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35. The apparently unique manuscript copy is in Dår al-Kutub; see King, Cairo 
Catalogue, v. 2, p. 1030; Cairo Survey, p. 39. On the author, see Kitåb al-Fihrist, ed. 
Flügel, p. 281, tr. Dodge, p. 665; Sezgin GAS: V, p. 301; VI, p. 207, and VII, p. 406. 

36. One of the two extant manuscripts has an additional title with reference to Muris†us: 
wa >uluww a>midatihå wa >ilm >umq al-åbår wa >ur¥∂ al-anhår wa ghayr dhålika wa 
huwa yusammå M¥r•s†us (and the Elevation of its Height, and the Science of the Depth 
of Wells and the Width of Rivers and other Things, and he? is called M¥r•s†us [there is 
an entry under this Greek author in EI2]. The short Arabic treatise is not among the list 
of al-Kind•’s works reported by Ibn al-Nad•m; see Kitåb al-Fihrist, ed. Flügel, pp. 257–
261; tr. Dodge, pp. 618–620. Atiyeh, Al-Kindi: The Philosopher of the Arabs, 1966, p. 
200, lists it as no. 230 (citing Brockelmann, GALS I, p. 374); it is also cited in Ritter and 
Plessner, “Schriften Ja>q¥b ibn Is˙åq al-Kind•’s in Stambuler Bibliotheken,” p. 370.

37. See Sabra, The Optics of Ibn al-Haytham, Books I–III: On Direct Vision, 2 vols., 
1989 [Includes an English translation and commentary based on an earlier critical edi-
tion; see Bibliography. To be followed by a similar study of books IV–VII].

38. The former (attributed to Shaykh Ab¥ >Al• Ibn al-Haytham), seems to be more 
directly in the Arabic Euclidean tradition, than the latter (bearing the more commonly 
encountered name, al-Óasan ibn al-Óasan ibn al-Haytham) for including references to 
the eye (baßar) and its rays (shu>å>) in the course of discussions on height determina-
tion.

39. The author of Height is reported as a commentator on two works, the Persian S• 
Faßl (Thirty Chapters) attributed to ˇ¥s• and Euclid’s Elements; see Munzav•, Persian 
Manuscripts, vol. 1, p. 132.

40. On the corresponding Greek and Arabic terms for the bending of rays, see Kheiran-
dish, The Arabic Version of Euclid’s Optics, vol. 2, p. xliv. References to sources con-
taining the more common Arabic form appear on pp. 57–58, n. 205–206.

41. On the first of these, see Max Meyerhof’s edition, p. 109, lines 7–8 [reference from 
Sabra, The Optics of Ibn al-Haytham, v. 2, p. lviii, n. 80], where in>ikås is used together 
with inkisår, in the sense of the “turning back” (ruj¥>) of the visual rays (manåΩir); in 
the Arabic manuscript of De speculis, the verb yan>akis is used [fol. 104b, the Latin has 
convertitur]; see Tractatus [pseudo-] Euclidis De speculis, Björnbo and Vogl, Alkindi, 
Tideus und Pseudo-Euklid, p. 100 cited by Theisen, The Mediaeval Tradition, p. 294, n. 
54. For in>ikås in Ibn L¥qå’s Arabic translation of Aetius’ Placita philosophorum, see 
Daiber, Aetius Arabus, Die Vorsokratiker in arabischer Überlieferung, p. 204.

42. In ˇ¥s•’s Shu>å> and In>ikås al-shu>å>åt wa in>i†åfuhå, the expression is used for the 
deflection of the cones of ray at equal angles when encountered by polished surfaces. In 
the case of ˇ¥s•’s commentators, there is Badr al-D•n al-ˇabar•’s short Persian treatise, 
Irtifå>, with two chapters devoted to the problem of height determination by means of a 
plane mirror. The author, “recalling” another method by which the height of tall objects 
can be made known (ma>l¥m) by means of a mirror placed at different locations on the 
ground, states that what the people of the art (ahl-i ßinå>at) may have offered on this 
subject “has not reached him, nor has it been seen by him anywhere.” The commentator 
of S• faßl (Thirty Chapters) attributed to ˇ¥s•, and of Euclid’s Elements expresses the 
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equality of visual angle (zåwiyat al-shu>å>•) and the angle of reflection (zåwiyat al-
in>ikås•) in the more common form and explicitly associates the principle with the sci-
ence of optics (>ilm al-manåΩir), see Kheirandish, The Arabic Version of Euclid’s Optics, 
vol. 1, p. l.

43. On the evidence from the Arabic tradition, see Kheirandish, The Arabic Version 
of Euclid’s Optics, vol. 1, pp. xxvi–xxvii, and p. xxix, and vol. 2, p. 6; on the case of 
the Greek tradition, see Jones, “Peripatetic and Euclidean Theories of the Visual Ray,” 
p. 52, and Knorr, “Pseudo-Euclidean Reflections in Ancient Optics,” p. 29, n. 48–49.

44. Kheirandish, Elaheh, “What Euclid Said to his Arabic Readers: The Case of the 
Optics,” Proceedings of the XXth International Congress of History of Science, Liège, 
1997, Published in Optics and Astronomy (Simon, G. and Débarbat, S., eds.), 2001, 
pp. 17–28. 

45. In the first formulation, namely Euclid Kitåb al-ManåΩir (Optics), the indicators 
are the ray (al-shu>å>), issuing (yakhruj), the eye (al->ayn), paths (sum¥t), infinte (lå 
nihåya) multitude (kathra), cone (makhr¥†), apex (ra<s), and object (mubßar), while in 
the second formulation, that is, Euclid’s Kitåb al-Mir<åh (De speculis) they are, lumi-
nous power (quwwa n¥riyya), spreading (yanbathth), pupil (nåΩir), ßanawbar• (pine-
shaped), zujj, musta˙add (pointed). Note that the latter term (zujj), a non-standard 
form for the cone’s apex, seems to be intended in the Arabic De speculis (S), A˙mad 
ibn >°så’s ManåΩir wa al-maråya al-mu˙riqa (Ó), and in al-Kind•’s Taqw•m (Q), rather 
than the similarly transcribed terms “ra˙b” and “wa bihi” in Rashed’s edition of Q and 
S respectively: see Œuvres Philosophiques et Scientifiques d’ Al-Kind•, vol.1, p.163 
and p. 338. 

46. Some aspects treated by Ibn al-Haytham are perception by glancing (idråk bi al-
bad•ha), by contemplation (idråk bi al-ta<ammul) by recognition (idråk bi al-ma>rifa), 
and ascertained (mu˙aqqaq) perception, see Sabra, The Optics of Ibn al-Haytham, vol. 
2, p. 241; for a general discussion, see H. Wolfson, “The Internal Senses in Latin, Arabic 
and Hebrew Philosophical Texts,” Harvard Theological Review, 1935, 28: 69–133.

47. Sabra, A. I., The Optics of Ibn al-Haytham, vol. 2, pp. lviii–lix.

48. Sabra, The Optics of Ibn al-Haytham, vol. 2, pp. lviii–lix (on the limited circulation 
of Ptolemy’s Optics, with specific reference to relevant works including the exceptional 
cases of Ibn Sahl and Ibn al-Haytham); see also Sabra, “Psychology vs. Mathematics: 
Ptolemy and Alhazen on the Moon Illusion,” Mathematics and its Applications to 
Science and Natural Philosophy in the Middle Ages: Essays in the Honor of Marshall 
Clagett, ed. Edward Grant and John E. Murdoch, Cambridge: Cambridge University 
Press, 1987: 217–247, pp. 219–221.

49. Fåris•’s reference to “the shortcomings of Euclid’s book [i.e., Optics]” and his rea-
sons for undertaking his own optical researches appear in the introduction of his impor-
tant commentary on Ibn al-Haytham’s Kitåb al-ManåΩir, entitled Tanq•˙ al-ManåΩir, 
ed. Hyderabad, p. 16: “I saw in the statements of some leading philosophers, and in 
more than one of them, that light shines from a luminous object in straight lines, and 
when it encounters a surface such as the surface of water, it is reflected from it at 
angles equal to their opposite [side] and penetrates (yanf¥dh) into it on the extension of 
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illumination, and is refracted (in>a†afat), in the extension of reflection (in>ikås), and 
from this four equal angles are produced, angles of direct radiation, reflection, pen-
etration, and refraction (zawåyå al-istiqåmah, al-in>ikås, al-nuf¥dh, wa al-in>i†åf). So 
I became puzzled (†a˙ayyartu) by these rules (a˙kåm).” ˇ¥s•’s treatment in “Risåla f• 
in>ikås al-shu>å>åt wa in>i†afihå” [see note below] is cited by A. I. Sabra in this connec-
tion: The Optics of Ibn al-Haytham, vol. 2, pp. lxix–lxxi, n. 112.

50. See English translation, Winter and >Arafat, “A Statement on Optical Reflection 
and ‘Refraction’ Attributed to Naß•r ud-d•n a†-ˇ¥s•,” p. 141; partial German trans-
lation, Wiedemann, “Über die Reflection und Umbiegung des Lichtes von Naß•r al D•n 
al-ˇ¥s•.” 

51. Sabra, The Optics of Ibn al-Haytham, vol. 2, p. lix: “all the historical evidence we 
have points to the fact that Ptolemy’s book [i.e., Optics] was little used both in Antiquity 
and in the Islamic Middle Ages almost up to I.H.’s time.” 

Bibliography

Aristotle, Problems, v. 1: Books I–XXI, edited by T. E. Page, E. Capps, and W. H. D. 
Rouse, with an English translation by W. S. Hett, Loeb Classical Library, Cambridge: 
Harvard University Press, and London: William Heinemann Ltd., 1936.

Aristotle, Posterior Analytics, edited by G. P. Goold, with an English translation by 
Hugh Tredennick (Cambridge: Harvard University Press, London: William Heinemann 
Ltd., 1976; Arabic version, Kitåb al-Burhån min Man†iq Aris†¥, ed. A. Badawi (Cairo: 
Dår al-Kutub al-Mißriyya, 1949), Islamica VII, part 2, 309–465.

Atiyeh, G. N., Al-Kind•: The Philosopher of the Arabs, Rawalpindi: Islamic Research 
Institute, Publication No. 6, 1966.

Björnbo and Vogl, Alkindi, Tideus und Pseudo-Euklid = Alkindi, Tideus und Pseudo-
Euklid: Drei optische Werke, herausgegeben und erklärt von A. Björnbo und Sebastian 
Vogl, Abhandlungen zur Geschichte der mathematischen Wissenschaften, Leipzig/
Berlin, 1912, 26, 3: 1–176.

Brockelmann, GAL = Brockelmann, Carl, Geschichte der arabischen Litteratur, 2nd 
edition, Leiden: E. J. Brill, 2 vols. and 3 suppl., 1937–1949 (GAL I = vol. I, 1943; GAL 
II = vol. II, 1949; GALS I = Suppl. I, 1937; GALS II = Suppl. II, 1938; GALS III = Suppl. 
III, 1943).

Brownson, C. D., “Euclid’s Optics and Its Compatibility with Linear Perspective,” 
Archive for History of Exact Sciences, 1981, 24, 3: 165–194.

Burton, H. E., “The Optics of Euclid,” Journal of the Optical Society of America, 1945, 
35: 357–372.

Clagett, Marshall, “Some General Aspects of Physics in the Middle Ages,” Isis, 1948, 
39: 29–44.

Crombie, Alistair C., Robert Grosseteste and the Origins of Experimental Science: 
1100–1700, Oxford: At the Clarendon Press, 1953.



Elaheh Kheirandish 78 The Many Aspects of “Appearances”: Arabic Optics to 950 ad 79

Daiber, Hans, Aetius Arabus: Die Vorsokratiker in arabischer Überlieferung, Wiesbaden, 
1980.

DSB = Dictionary of Scientific Biography, ed. C. C. Gillispie, 16 vols. (including 
Supplement and Index), New York: Charles Scribner’s Sons, 1970–1980.

EI2 = Encyclopaedia of Islam, 2nd edition, Leiden: E. J. Brill, 1960–. 

Euclid, Elements, see Heath, The Thirteen Books of Euclid’s Elements. 

Euclid, Optics: see Heiberg, Euclidis Optica; Burton, “The Optics of Euclid;” Ver 
Eecke, Euclide: l’Optique et la Catoptrique.

Endress, Gerhard, “The Circle of Al-Kind•: Early Arabic Translations from the Greek 
and the Rise of Islamic Philosophy,” in The Ancient Tradition in Christian and Islamic 
Hellenism (G. Endress and R. Kruk, eds.), Leiden: Research School CNWS, 1997.

al-Fåråb•, Ab¥ Naßr, I˙ßå< al->ul¥m, ed. >Uthmån Am•n [= Osman Amine], Cairo: 
Librairie Anglo-Égyptienne, 1968 [1st and 2nd edn., Cairo, 1931, 1949]; A. Gonzàlez 
Palencia, Alfarabi Catàlogo de las ciencias: two medieval Latin translation, modern 
edition and Spanish translation, Madrid, 1932.

al-Fåråb•, Kitåb al-Burhån, ed. M. Fakhry, Beirut: Dår al-Mashriq, 1986.

al-Fåris•, Kamål al-D•n, Tanq•˙ al-ManåΩir li-dhaw• al-abßår wa al-baßå<ir, 2 vols., 
Hyderabad, 1347–1348 (=1928–1930).

Filius, L. S., The Problemata Physica Attributed to Aristotle, The Arabic Version of 
Óunain ibn Is˙åq and the Hebrew Version of Moses ibn Tibbon, Aristoteles Semitico-
Latinus, Leiden: Brill, 1999.

Galen, De usu Partium, Arabic translation: Kitåb Manåfi> al-a>∂å<, Bibliothèque 
Nationale: MS ar. 2583; English translation, see Margaret May.

Gulch•n Ma>ån•, �Åstån-i Quds = A Catalogue of Manuscripts in the Astan Quds Razavi 
Library (Fihrist-i Kutub-i kha††•-yi Ki†abkhånih-i �Åstån-i Quds-i Ra∂av•) by Ahmad 
Golchin Maani, v. 8, Mashhad: A publication of the Cultural and Library Affairs, no. 
6, 1350=1971.

Heath, Thomas, L. The Thirteen Books of Euclid’s Elements, second edition (revised 
with additions), 3 vols, Cambridge: Cambridge University Press, 1926 (Dover, 1956)

Heiberg, J. L., Euclidis Optica = Heiberg, J. L., Euclidis Optica Opticorum recensio 
Theonis, Catoptrica, cum scholiis antiquis, edidit Heiberg, Euclidis Opera Omnia, edi-
derunt J. L. Heiberg et H. Menge, vol. VII, Leipzig: Teubner, 1895: 1–121.

Heiberg, Opticorum recensio Theonis = Heiberg, J. L., Euclidis Optica, Opticorum recen-
sio Theonis, Catoptrica, cum scholiis antiquis, edidit Heiberg, Euclidis Opera Omnia, 
ediderunt J. L. Heiberg et H. Menge, vol. VII, Leipzig: Teubner, 1895: 143–247.

Óunayn Ibn Is˙åq, Kitåb al->Ashar maqålåt f• al->ayn, see Meyerhof, The Book of the 
Ten Treatises of the Eye Ascribed to Hunain ibn Is-˙âq (809–877 AD).



Elaheh Kheirandish 80 The Many Aspects of “Appearances”: Arabic Optics to 950 ad 81

Óusayn• and Mar>ash•, Mar>ash• = Óusayn•, S. A., and Mar>ash•, S. M., Fihrist-i 
Nuskhih<h•-yi kha††•-yi Kitåbkhånih-i Ha∂rat-i �Åyatullåh al->UΩmå Najåf•-yi Mar<ash• . 
. . , v. 11, 1364 (=1985); v. 12, 1365 (=1986).

Ibn al-Haytham, Kitåb al-ManåΩir, ed. Sabra, A. I., Al-Óasan Ibn al-Haytham, Kitåb 
al-ManåΩir: Books I–II–III <On Direct Vision>: Edited with Introduction, Arabic-Latin 
Glossaries and Concordance Tables by Abdelhamid I. Sabra, Kuwait: The National 
Council for Culture, Arts and Letters, 1983. See also, Sabra, A. I. The Optics of Ibn al-
Haytham: Books I–III On Direct Vision, London, 1989.

Ibn al-Nad•m, Kitåb al-Fihrist, ed. Flügel = Ibn al-Nad•m, Mu˙ammad ibn Is˙åq, Kitåb 
al-Fihrist, edited by Gustav Flügel, 2 vols., Leipzig: Verlag von F. C. W. Vogel, 1871–
1872; reprinted, Beirut: Khayyå†, 1964. 

Ibn al-Nad•m, Kitåb al-Fihrist: The Fihrist of al-Nad•m: A Tenth-Century Survey of 
Muslim Culture, Bayard Dodge (editor-translator), 2 vols. (Records of Civilization: 
Sources and Studies no. 83), New York and London: Columbia University, 1970. 

al-Jå˙iΩ, Kitåb al-Tarb•> wa al-tadw•r: edition, Pellat, Le Kitåb al-tarb•> wa-t-tadw•r de 
»å˙iΩ.

Jones, Alexander, “Peripatetic and Euclidean Theories of the Visual Ray,” Physis, 1994, 
31, 1: 47–76.

Khal•fåt (ed.) >�Åmir•, Raså<il = Raså<il-i Abu al-Óasan-i >�Åmir• bå muqaddamih va 
taß˙•˙-i Sa˙bån Khal•fåt, tarjumih-i muqqadamih, Mihd• Tadayyun, Tehran:  Markaz-i 
Nashr-i Dånishgåh• (University Publications), 1375=1996 [earlier edition, Raså<il Ab• 
al-Óasan al->�Åmir• wa-shadharåtuhu al-falsaf•yah: diråsah wa-nuß¥s, Amman: al-
Jåmi>ah al-Urdun•yah, 1988].

Kheirandish, Elaheh, “The Arabic ‘Version’ of Euclidean Optics: Transformations as 
Linguistic Problems in Transmission,” Tradition, Transmission, Transformation: 227–
247, Leiden: Brill, 1996.

Kheirandish, Elaheh, “The ‘ManåΩir’ Tradition through Persian Sources,” La sciences 
dans la monde iranien, ed. ˛. Vesel, H. Beikbaghban et B. Thierry de Crussol des 
Epesse, Tehran: Institut Français de Recherche en Iran (IFRI), 1998: pp. 125–145.

Kheirandish, Elaheh, The Arabic Version of Euclid’s Optics: Kitåb Uql•dis f• Ikhtilåf al-
manåΩir. Edited and translated with historical introduction and commentary (revised 
dissertation, Harvard University, 1991), 2 vols., Springer-Verlag: Sources in the History 
of Mathematics and Physical Sciences, no. 16, 1999.

Kheirandish, Elaheh, “What Euclid Said to His Arabic Readers: The Case of the 
Optics,” Proceedings of the XXth International Congress of History of Science, Liège, 
1997, Published in Optics and Astronomy (Simon, G. and Débarbat, S., eds.), 2001, 
pp. 17–28. 

Kheirandish, Elaheh, “The Mixed Mathematical Sciences of the Islamic Middle Ages,” 
The Cambridge History of Science, 8 vols. ed. David C. Lindberg and Ronald Numbers; 
vol. 2: The Middle Ages, Cambridge University Press, forthcoming.



Elaheh Kheirandish 80 The Many Aspects of “Appearances”: Arabic Optics to 950 ad 81

al-Kind•, De aspectibus: see Björnbo and Vogl, Alkindi, Tideus und Pseudo-Euklid: 
Drei optische Werke. See also Rashed, Œuvres Philosophiques et Scientifique d’ Al-
Kind•, 1997.

King, David A., A Catalogue of the Scientific Manuscripts in the Egyptian National 
Library, Cairo: General Egyptian Book Organization in collaboration with The American 
Research Center in Egypt, and the Smithsonan Institution, Part II, 1986 [Part I, 1981].

King, David A., A Survey of the Scientific Manuscripts in the Egyptian National Library, 
published for The American Research Center in Egypt, Catalogs, vol. 5, Winona Lake, 
Indiana: Eisenbrauns, 1986.

Knorr, Wilbur R., “Pseudo-Euclidean Reflections in Ancient Optics: A Re-Examination 
of Textual Issues Pertaining to the Euclidean Optica and Catoptrica,” Physis, 1994, 31, 
1: 1–45.

Krause, Max, “Stambuler Handschriften islamischer Mathematiker,” Quellen und 
Studien zur Geschichte der Mathematik, Astronomie und Physik, Berlin, 1936, B, Band 
3, Heft 4: 437–532.

Lejeune, Albert, L’Optique de Claude Ptolémée dans la version latine d’après l’arabe 
de l’émir Eugène de Sicile: Édition critique et exégétique augmentée d’une traduction 
française et de complément, Leiden: E. J. Brill, Collection de Travaux de l’Académie 
Internationale d’Histoire des Sciences, no. 31, 1989. [earlier edn.: Louvain: Université 
de Louvain, Recueil de travaux d’histoire et de philologie, 4. sér., fasc. 8, 1956].

Lindberg, David C., Theories of Vision from Al-Kindi to Kepler, Chicago and London: 
The University of Chicago Press, 1976.

Madelung, Wilferd, “A˙mad ibn >°så”, EI2, Supplement, pp. 48–49.

May, Margaret T., Galen On the Usefulness of the Parts of the Body: Translated from 
the Greek with an Introduction and Commentary, 2 vols., Ithaca: Cornell University 
Press, 1968–1969.

Meyerhof, Max, The Book of the Ten Treatises on the Eye Ascribed to Hunain ibn Is-˙âq 
(809–877 A.D.), Cairo: Government Press, 1928.

Munzav•, A Catalogue of Persian Manuscripts (Fihrist-i Nuskhih´hå-yi kha††•-yi fårs•) 
by Ahmad Monzavi, Tehran: Regional Cultural Institute, publication, v. 1, no. 14, 1348 
(=1969).

Pellat, Charles, Le Kitåb al-tarb•> wa-t-tadw•r de »å˙iΩ, Damascus: Institut Français 
de Damas, 1955. 

Pellat, Charles, The Life and Works of Jå˙iΩ: Translations of selected texts, Berkeley and 
Los Angeles: University of California Press, 1969.

Peters, F. E., Aristoteles Arabus: The Oriental Translations and Commentaries on the 
Aristotelian Corpus, Leiden: E. J. Brill, 1968.

Ptolemy, Optica: see Lejeune, L’Optique de Claude Ptolémée, and Smith, “Ptolemy’s 



Elaheh Kheirandish 82 The Many Aspects of “Appearances”: Arabic Optics to 950 ad 83

Theory of Visual Perception: An English Translation of the Optics with Introduction 
and Commentary.”

Ragep, F. J., Naß•r al-D•n al-ˇ¥s•’s Memoir on Astronomy: al-Tadhkira f• >ilm al-hay<a, 
Edition, Translation and Commentary, 2 vols., New York: Springer-Verlag, Sources in 
the History of Mathematics and Physical Sciences, no. 12 (ed. G. J. Toomer), 1993.

Rashed, R., Œuvres Philosophiques et Scientifique d’ Al-Kind•. Vol. I: L’Optique et la 
Catoptrique in Islamic Philosophy Theology and Science, Texts and Studies edited by 
H. Daiber and D. Pingree, vol. xxix, Œuvres Philosophiques et Scientifiques d’Al-Kind• 
editées par Jean Jolivet et Roshdi Rashed, Leiden: E. J. Brill, 1997.

Ritter, H. and Plessner, M., “Schriften Ja>q¥b ibn Is˙åq al-Kind•’s in Stambuler Biblio-
theken,” Archiv Orientalni, 1932, 4: 363–372.

Ronchi, Vasco, “Classical Optics is a Mathematical Science,” Archive for History of 
Exact Sciences, 1961, 1, 2: 160–171.

Sabra, A. I., “Ibn al-Haytham,” DSB, 1972, 6: 189–210 [reprinted in Sabra, Optics, 
Astronomy and Logic, 1994, II: 189–210].

Sabra, A. I., “A Note on Codex Biblioteca Medicea Laurenziana Or. 152,” Journal for 
the History of Arabic Science, 1977, 1, 2: 276–283. 

Sabra, A. I., “ManåΩir, or >Ilm al-ManåΩir,” EI2, 1987, 6, fasc. 103–104: 376–377.

Sabra, A. I. “Psychology vs. Mathematics: Ptolemy and Alhazen on the Moon Illusion,” 
Mathematics and its Applications to Science and Natural Philosophy in the Middle 
Ages: Essays in the Honor of Marshall Clagett, ed. Edward Grant and John E. Murdoch, 
Cambridge: Cambridge University Press, 1987: 217–247.

Sabra, A. I., The Optics of Ibn al-Haytham: Books I–III On Direct Vision, Translated 
with Introduction and Commentary by A. I. Sabra, 2 vols. (Studies of the Warburg Insti-
tute edited by J. B. Trapp, vols. 40 i–ii), London: The Warburg Institute, University of 
London, 1989.

Sabra, A. I., and Heinen, Anton, “On Seeing the Stars: Edition and Translation of Ibn 
al-Haytham’s Risåla f• Ru<yat al-kawåkib,” Zeitschrift für Geschichte der arabisch-isla-
mischen Wissenschaften, 1991/92, 7: 31–72.

Sabra, A. I., “On Seeing the Stars II: Ibn al-Haytham’s ‘Answer’ to the ‘Doubts’ Raised 
by Ibn Ma>dån.” Zeitschrift für Geschichte der arabisch-islamischen Wissenschaften, 
1995/96, 10: 1–59.

al-Íafad•, Kitåb al-Wåf• bi al-wafayåt, v. 7, ed. I˙sån >Abbås, Wiesbaden, 1389=1969.

Sezgin, Fuat, Geschichte des arabischen Schrifttums, Leiden: E. J. Brill, 1970–1979
(GAS V: Mathematik, 1974; GAS VI: Astronomie, 1978; GAS VII: Astrologie, Meteorol-
ogie, und Verwandtes, 1979).

Simon, Gérard, “The Notion of the Visual-Ray,” presented in a conference on optics 
at the Dibner Institute, May, 1990, “La notion de rayon visuel et ses conséquences sur 



Elaheh Kheirandish 82 The Many Aspects of “Appearances”: Arabic Optics to 950 ad 83

l’optique géométrique grecque,” published in Physis, Rivista Internazionale di Storia 
della Scienza (Olschki, L. S., ed.), 94, pp. 77–112.

Theisen, The Mediaeval Tradition = Theisen, Wilfred R., The Mediaeval Tradition of 
Euclid’s Optics, Ph.D. Thesis, University of Wisconsin, 1972, facsimile, Ann Arbor: 
University Microfilms International, 1984.

Tobin, Richard, “Ancient Perspective and Euclid’s Optics,” Journal of the Warburg and 
Courtauld Institutes, 1990, 53: 14–42.

Toomer, G. J., Diocles on Burning Mirrors: The Arabic Translation of the Lost Greek 
Original, Edited with English Translation and Commentary by G. J. Toomer, New York: 
Springer-Verlag, Sources in the History of Mathematics and Physical Sciences, no. 1 
(ed. M. J. Klein and G. J. Toomer), 1976.

al-ˇ¥s•, Naß•r al-D•n, Ta˙r•r al-ManåΩir, Majm¥> al-raså<il, Hyderabad: >Uthmåniyya, 
part 1, 1358 (=1939), 5: 2–24.

Veltman, Kim H., Optics and Perspective: A Study in the Problems of Size and Distance, 
Ph.D. Thesis, London: The Warburg Institute, 1975.

Ver Eecke, Euclide: l’Optique et la Catoptrique = Euclide: l’Optique et la Catoptrique, 
Œuvres traduites pour la première fois du grec en français, avec une Introduction et des 
Notes par Paul Ver Eecke, Nouveau Tirage, Paris: Librairie Scientifique et Technique 
Albert Blanchard, 1959.

Wiedemann, Eilhard, “Über die Reflexion und Umbiegung des Lichtes von Naß•r al 
D•n al ˇ¥s•,” Jahrbuch für Photographie und Reproduktionstechnik, Halle, 1907, 21: 
38–44.

Winter, H. J. J. and >Arafat, W., “A Statement on Optical Reflection and ‘Refraction’ 
Attributed to Naß•r ud-D•n a†-ˇ¥s•,” Isis, 1951, 42: 138–142. 

Wolfson, H. A. “The Internal Senses in Latin, Arabic and Hebrew Philosophical Texts,” 
Harvard Theological Review, 1935, 28: 69–133.

al-Ya>q¥b•, Ta<r•kh: Ibn-Wådhih qui dicitur Al-Ja>q¥b•, Historiae, pars prior historiam 
ante-Islamicam continens, edidit indicesque adjecit M. Th. Houtsma, 2 vols., Leiden: 
E. J. Brill, 1883. 





[T]he nature of our subject being confused, in addition to the continued dis-
agreement through the ages among investigators who have undertaken to 
examine it, and because the manner of vision is not ascertained, we have 
thought it appropriate that we direct our attention to this subject as much as 
we can, and seriously apply ourselves to it, and examine it, and diligently 
inquire into its nature.—We should, that is, recommence the inquiry into 
its principles and premises, beginning our investigation with an inspection 
of the things that exist and a survey of the conditions of visible objects. We 
should distinguish the properties of particulars, and gather by induction what 
pertains to the eye when vision occurs and what is found in the manner of 
[visual] sensation to be uniform, unchanging, manifest and not subject to 
doubt.—After which, we should ascend in our inquiry and reasonings, grad-
ually and orderly, criticizing premises and exercising caution in regard to con-
clusions—our aim in all that we make subject to inspection and review being 
to employ justice, not to follow prejudice, and to take care in all that we judge 
and criticize that we seek the truth and not to be swayed by opinion.

 Ibn al-Haytham, Optics, Preface [6]

[A]ll that sight perceives it perceives by refraction.

 Ibn al-Haytham, Optics, Bk VII, Ch. 6.

I  Introduction: A Paradox of Arabic Optics

The history of Arabic science is full of puzzles, one of which is a paradox 
revealed by comparing the history of optics with that of astronomy. Arabic 
astronomy was launched in the eighth century AD with a series of transla-
tions that included Ptolemy’s Almagest, Euclid’s Elements, and other Greek 
mathematical works deemed necessary for pursuing a serious study of the 
subject. This clearly concerted effort was part of a spectacular cultural move-
ment actively supported by the >Abbåsid caliphate in Baghdad. The ensuing 
scientific endeavor, which continued with renewed surges of energy under 
various dynastic rules in various parts of the Islamic world for more than seven 
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hundred years, always gave pride of place to astronomy as the discipline at the 
very top of the Greek mathematical sciences and, sometimes, even at the top 
of the entire hierarchy comprising the sum total of Greek theoretical knowl-
edge, as defined in Greek antiquity and somewhat modified by later traditions 
represented in particular by Ptolemy in the second century AD. In most or per-
haps all of the patronized scientific activities from the eighth to the fifteenth 
century—whether in Baghdad, Cairo, Muslim Spain, Ghazna, Marågha, or 
Samarkand—astronomy tended to be favored as the pursuit most worthy of 
the attention of both the patron rulers and the patronized mathematicians who 
were keen on mastering and exploiting the Greek legacy. This must have been 
due in large part to the practical benefits widely expected from astronomy, in 
particular those promised by astrology, usually conceived as applied astron-
omy. But along with this practical motivation, astronomy came to be viewed, 
almost from the start, as a supreme form of scientific knowledge that pos-
sessed exact methods of observation and calculation and proof, and as a com-
pelling or at least highly persuasive way of manifesting God’s wisdom and 
the perfection of His handiwork. Many Muslim astronomers (probably most 
of them at first) embraced a pre-Islamic, Hellenistic view of the world and of 
man’s place in it, but almost all of them were also willing to put their skills in 
observation and computation at the service of Muslim religious practice. For 
example, they developed exact methods for determining prayer times and the 
direction of Muslim prayer toward Mecca at all localities within the Islamic 
world. As a result of all these perceptions, expectations, and assorted claims, 
which were in part practical, in part theoretical or spiritual or religious, the 
amount of resources and intellectual energy that were spent on promoting and 
perfecting the science of astronomy far outweighed what was available for any 
of the “ancient sciences,” al->ul¥m al-qad•ma or >ul¥m al-awå<il, with the pos-
sible exception of medicine, which itself frequently received more than cur-
sory attention from scholars deeply engaged in the mathematical/astronomical 
sciences.1

And yet, despite the many refinements, corrections, and innovations, 
often motivated by keen intellectual interest and real investigative and criti-
cal attitudes, Arabic astronomy never managed to break out of the Ptolemaic 
paradigm. The planets and the orbs that carried them around continued to 
move in circles, with definite preference given to traditional uniform speeds; 
Ibn al-Shå†ir in fourteenth-century Damascus argued for discarding Ptolemy’s 
eccenters, but the epicycles remained, still serving the cause of circular uni-
form motion; and, despite repeated ventures into theoretical aporetic (raising 
doubts/shuk¥k/aporiai and attempting solutions), the earth stayed firmly put 
and unrotating at the center of a universe largely structured by basic tenets 
of Aristotelian natural philosophy. The twelfth-century “Andalusian Revolt” 



A. I. Sabra 86 Ibn al-Haytham’s Revolutionary Project in Optics 87

(itself inspired by strictly Aristotelian cosmology) against the Ptolemaic eccen-
ters and epicycles, proved a non-starter that failed to induce later developments 
in the Islamic world (Sabra, 1984; Samsó, 1994). Arabic astronomy, whose 
impressive accomplishments have yet to be sufficiently appreciated by the gen-
eral historian of science, never achieved what can meaningfully be called “rev-
olution” (Sabra, 1998).

Now compare the above account with the story of Arabic optics. As in 
the case of astronomy, Arabic “optics”/>ilm al-manåΩir,” by which term I shall 
always refer to the mathematical study of vision (the meaning this term had in the 
Greek and Arabic traditions), also started with the translation of ancient works 
into Arabic. And while the early translations in astronomy included Indian and 
Persian, as well as Greek, materials, Arabic research in optics can definitely be 
said to have been originally based entirely on Greek sources. Of the two surviv-
ing Greek works bearing the title OPTIKA, namely those of Euclid and Ptolemy, 
the first is known to have circulated in Baghdad in Arabic version(s) already 
in the ninth century (Kheirandish, 1999). Apart from the text or texts purport-
ing to be translations of Euclid’s treatise, the Arabic optical writings that have 
reached us from that period (they include those of Óunayn ibn Is˙åq, A˙mad 
ibn >°så, al-Kind•, and Qus†å ibn L¥qå),2 exhibit a mixture, or rather mixtures of 
doctrines that can be traced back to Galen and, through him, to Plato and to the 
Stoics, as well as, independently of these authorities, to Euclid’s Optics itself. 
What all of these ninth-century writers on optics had in common was their 
adherence to one version or another of what has been called the extramission 
hypothesis, according to which vision of an external object was mediated by a 
visual emanation from the eye that extended in the shape of a cone (makhr¥†, 
ßanawbara/konos) all the way to the object seen. That emanation was either the 
sensitive material pneuma itself that had first descended from the brain into 
the eyes through the optic nerves or, in most cases, and almost certainly under 
the influence of Galen’s arguments (especially in his De placitis Hippocratis 
et Platonis, see below), a sensitive power (quwwa/dynamis) conferred by the 
pneuma upon the surrounding air when it struck the air as it emerged from the 
pupil.3 Besides the pneuma’s sensitive capacity indicated by calling it “visual”/
baßar• or, literally, “seeing spirit/breath” (al-r¥˙ al-båßir), the pneuma was 
given a further property indicated by also calling it “luminous breath” (al-r¥˙ 
al-n¥r• or al-nayyir) or, simply, “the light” (al-n¥r).4 Since everybody knew 
that vision does not take place in the dark, the further assertion was made that 
illumination of the air by a shining body (the sun, the stars, or a torch) was nor-
mally a necessary condition for the instrument of sight, that is, the pneuma or 
the qualitatively altered air, to perform its action. Vision happened as a result 
of the “contact” or “coalescence” or “cooperation” of the visual light occu-
pying the visual cone with the external light, and it occurred along the radial 
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lines (khu†¥† al-shu>å>, also called “visual rays,” manåΩir/opseis) constituting 
the cone which spread outwardly from its vertex at the eye to its base at the 
object.5

Apart from a passage in al-Kind•’s De aspectibus (Proposition 11) that 
S. Vogl pointed out in 1912,6 and a brief, ambiguous reference in al-Kind•’s 
Taqw•m al-kha†a< wa al-mushkilåt allat• li-Uql•dis f• Kitåbihi al-maws¥m bi-
al-ManåΩir/“Rectification of Euclid’s Optics” to Ptolemy and Theon of Alex-
andria,7 Ptolemy’s Optics is conspicuously absent from the Arabic discussions 
of the ninth century. In these discussions it is always Euclid’s Optics that is 
cited as an authority, or sometimes, as in the case of al-Kind•, taken to task for 
some failing or another—but never in conjunction with an explicit mention of 
Ptolemy’s treatise.—It would thus seem that the continuous radiation of visual 
light, which is the view definitely favored (but not necessarily invented) by 
Ptolemy (d. ca. 170), had reached the ninth-century Arabic writers, not directly 
through acquaintance with Ptolemy’s treatise, but through Galen (d. ca. 214), 
or through sources not all of which are presently known to us.

One is particularly struck by two obseravations that strongly argue 
against direct acquaintance on the part of those writers with Ptolemy’s Optics, 
and against any correct understanding or appreciation of his distinctive contri-
butions. The first observation is the absence from their known compositions 
of the certainly non-Euclidean and importantly (though not exclusively) Ptol-
emaic emphasis on the primacy of color as a precondition for gaining percep-
tion of all other visible properties as qualifications of color, and of coloration 
as the primary “effect” (passio/infi>ål or ta<th•r/pathos) produced in the organ 
of sight (visus/baßar/opsis).8 (See below, Section II.)

The second observation is that when some of the same ninth-century 
writers attempted a reasoned account of optical refraction in terms of lines 
and angles (we have two such accounts—one by A˙mad ibn >°så and the other 
by al-Kind•), they only produced disastrously wrong arguments that could not 
possibly have been conceived by someone who had read and understood Book 
V of Ptolemy’s Optics.9 It is also significant that the somewhat extended expo-
sition by al-Fåråb• (d. AD 950) of the “mathematical” science of optics counts 
three modes of optical reflection (all of which cases of bending of the visual 
ray back in the direction of the viewer, and to which he assigns three differ-
ent names), but fails to mention refraction (Ibn al-Haytham, 1989, II, Intro-
duction, pp. lvi–lviii). Add to this the fact that the same erroneous account, 
found in Ibn >°så and in the fragment ascribed to al-Kind•, reappears, without 
correction, in an early astronomical work by Ibn al-Haytham (“Commentary 
on Almagest,” MS Saray, Ahmet III 3329),10 a work which may have helped 
to spread misunderstanding of the refraction phenomenon among mathemati-
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cians as late as the thirteenth century, such as Naß•r al-D•n al-ˇ¥s• (d. 1274) 
and Qu†b al-D•n al-Sh•råz• (d. 1311).11—That the Arabic tradition of Ptolemy’s 
Optics differed greatly from that of his Almagest should be sufficiently clear 
from the additional fact that the optical part in the widely-used collection of 
“the middle books” (al-Mutawassi†åt), prepared by al-ˇ¥s• for the use of stu-
dents of astronomy, represented not the advanced state of knowledge found in 
Ptolemy’s treatise, but the stage reached four-and-a-half centuries earlier in 
Euclid’s Optics.12 

The first clear evidence we have of a correct understanding of Ptolemy’s 
theory of refraction does not appear in the Arabic sources available to us until 
the second half of the tenth century, when the Persian mathematician al->Alå< 
ibn Sahl was able to put Ptolemy’s ideas to use in formulating entirely orig-
inal geometrical arguments for the construction of burning instruments by 
means of refraction.13 That was a landmark achievement, and one of the fruits 
of Buwayhid patronage in Iraq, at a time remarkable for its intensive scientific, 
especially mathematical activity. But none of the extant works of Ibn Sahl is 
concerned, either wholly or in part, with problems of vision, a subject that in 
fact is never mentioned in them: his interests, it appears, lay elsewhere, prob-
ably with an eye to practical application.

It is, therefore, still true to say today that, for the first substantial treat-
ment of vision that was directly inspired by Ptolemy’s contribution, we have 
to turn to the works of Ibn al-Haytham in the first half of the eleventh century, 
that is just short of nine hundred years after Ptolemy and some two hundred 
and fifty years after the >Abbåsid rulers lent their support to the Greco-Arabic 
translation enterprise.

Ibn al-Haytham was one of the most prolific and most competent geo-
metricians in the Arabic tradition. In his younger years he wrote commentaries 
and/or summaries of Euclid’s Elements and Apollonius’s Conics.14 A “Com-
pletion of the Conics” (a reconstruction of the lost Book Eight) possibly also 
belongs to an early period in his life.15 A large proportion of his extant writings 
are devoted to problems of elementary and advanced geometry, including geo-
metrical methodology.16 In the Optics, which belongs to a later period in his 
career, Ibn al-Haytham solves the problem that has become known since the 
seventeenth century as “Alhazen’s problem”: to find the point(s) of reflection 
on the surface of a spherical mirror, convex or concave, given the positions of 
the eye and the visible object-point—a problem equivalent to a fourth-degree 
equation and therefore not solvable by ruler and compass (Sabra, 1982; 
Hogendijk, 1996). Armed with this solution he is able in Optics, Book V to 
undertake the first systematic investigation of images produced by mirrors of 
various shapes: spherical, cylindrical, and conical, convex and concave. 
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The titles and/or descriptions of works mentioned in lists of Ibn al-Hay-
tham’s writings also reveal a sustained interest in natural philosophy, which he 
called physics (al->ul¥m al-†ab•>iyya). In his early career, sometime before 417/
1027, he wrote a combined “summary” of the Optics of Euclid and of Ptolemy, 
in which he attempted a “completion” of Ptolemy’s work by offering a recon-
struction of Book I that, apparently, had been missing from the Greek text. 
This “summary” is not extant, and we can only speculate about the contents of 
that Arabic addition to Ptolemy’s truncated treatise. But it must have been con-
cerned at least in part with what Ibn al-Haytham considered to be the appro-
priate foundation for Ptolemy’s experimental and psychological treatment of 
a subject which Euclid had dealt with in predominantly geometrical terms. 
Also non-extant is a treatise on the “Nature of Sight,” and another on “Optics 
According to the Method of Ptolemy.”17 These three compositions, then, and 
possibly a fourth whose title we do not know (Optics, Preface, para. [8]) were 
preliminary exercises, so to speak, that eventually led to the large “Book of 
Optics (Kitåb al-ManåΩir), in seven treatises,” which Ibn al-Haytham com-
posed in mature age (at any rate, after AD 1028). That major work, announcing 
a decisive break with the basic assumptions of earlier mathematicians, includ-
ing Euclid and Ptolemy, had the declared ambition of not simply proposing 
an alternative view, but of building up a new and complete system of optics 
based on new foundations deliberately planned to combine both “physical” 
and mathematical doctrines and modes of argument.18 As is now well known, 
Ibn al-Haytham’s Book of Optics, once rendered into Latin (almost certainly in 
Spain), not long after a Latin version of Ptolemy’s treatise had also been made 
in Sicily from the Arabic, quickly established itself as the chief authority on its 
subject, a status which it maintained among philosophers and mathematicians 
in Europe up to the time of Kepler.—It is quite remarkable (perhaps the single 
most remarkable thing about the history of Arabic optics) that the first math-
ematician to have fallen under the influence of Ptolemy’s Optics as the most 
developed mathematical treatment of vision in antiquity was also the one who 
wrote the first treatise that superseded it.—This chapter has the immediate aim 
of identifying and bringing together the main ingredients that went into the 
making of Ibn al-Haytham’s revolutionary project.

II  The Substratum: A Phenomenalist Physics of Light

It is clear that for Ibn al-Haytham, as for Euclid and Ptolemy, “optics”/>ilm al-
manåΩir/h∑ optik∑ techn∑, was a study essentially concerned with visual per-
ception. Everybody had accepted that the presence of external light (however 
understood) was a condition of vision; and, apparently, Ptolemy, in the lost 
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Book I of his Optics, had included a discussion that reaffirmed the Platonic 
doctrine of synaugeia (ijtimå>, ishtiråk), meeting or cooperation of external 
light with visual emanation in the production of actual vision (Lejeune, 
1948, première partie).19 In the remaining four Books of Ptolemy’s treatise, 
however, external light appears as a factor previously stated but no longer 
investigated as an independent agency: the visual ray or flux (visus, which 
must have translated baßar, itself corresponding to opsis), spreading out from 
the eye in the form of a continuous cone, constantly figures in Ptolemy’s work 
as the indispensable instrument of vision in all three of its known modes: 
rectilinear, reflected, and refracted; while illuminated color is asserted to be 
the primary cause affecting the organ of vision, in such a way as to convey to 
the perceiver “accidents” or qualifications of color—for example, shape as the 
outline of a colored area, size as the magnitude of such an area, motion as the 
changing spatial relations between adjacent colored areas. True vision (vere 
videre) happens when the direct ray is blocked by a dense and shining object 
(lucidum spissum) which thus signals its presence where it is actually located 
with respect to the viewer (Ptol. Opt. II, [4, 26]; see below, sec. IV). Untrue 
vision occurs when the ray is deflected by a reflecting or refracting surface, 
thereby giving rise to the perception of an imaginary object lying behind the 
surface. This account was to be entirely abandoned or drastically reinterpreted 
when Ibn al-Haytham decided to reject the visual-ray hypothesis altogether, 
proposing instead a theory of vision based on a coherently articulated theory 
of light as an independent physical property—a property whose behavior in 
rectilinear propagation, reflection, and refraction was subject to experimen-
tally verified rules, and whose characteristic physical effect on physiological 
systems of vision initiated specified processes ultimately ending in the visual 
perception of external objects and of all their visible qualities or properties 
(ma>ån•/intentiones) through mental operations of “inference” (qiyås, istidlål) 
or interpretation.

In the Preface to his Optics, Ibn al-Haytham announced a new starting 
point for his investigation: the mathematical treatment of vision was to be pre-
served, as he declared, and thus the traditional conception of optics as a math-
ematical science remained, but it had to be based on a correct understanding 
of light as the sole agent of vision. As viewed by him, the crisis of the sci-
ence of vision (“confusion” was his term for the crisis) consisted in what he 
regarded as an unsatisfactory separation between a rigorous, and to that extent 
commendable, mathematical approach, and a not-so-thorough approach, to be 
found in the works of natural philosophers, which nevertheless had physical 
truth on its side. There was, therefore, need for a new “synthesis” (tark•b) that 
combined the advantages of these two opposed methods. 
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It must be emphasized that Ibn al-Haytham was contrasting, not two 
authorities, but rather two methodologies, and that what he consciously looked 
for, was not a synthesis by means of juxtaposition, but a new system of expla-
nations to be discovered only by a fresh inquiry based on newly established 
“principles and premisses.” And, as the Preface also announced, the proposed 
inquiry consisted not in simply conceding what was due to existing doctrines, 
but first in subjecting the relevant “particulars” and “properties” (of vision and 
of light) to “inspection” and then, and only then, in “gathering by induction 
(istiqrå<) what is found in the manner of vision to be uniform, unchanging and 
not subject to doubt” (Optics, I, 1[6]).20 Consistently with the declared aim of 
the book, and in agreement with the proposed procedure outlined in the Pref-
ace, the chapter following the Preface, on the “properties of sight,” immedi-
ately presents the reader with a general, orderly description of the “conditions” 
of vision as revealed by a series of detailed observations supported by care-
fully described experiments: the existence of distance between eye and object; 
the existence of unobstructed straight lines between points on the surface of 
the eye and points on the object’s perceived surface; luminosity of the object; 
a minimum size of the object that varies with the strength of the viewer’s eye-
sight; opacity and hence color of the seen object; and ascertainable variability 
of distance with the size of the object, the degree of the object’s luminosity and 
color, and with the strength of eyesight. These were the general, empirically 
established data of vision to be explained in terms of equally general “prop-
erties” of light to which Ibn al-Haytham turns in the next chapter in Book I, 
with more details to be added in Books IV and VII on reflection and refraction, 
respectively. 

The theory describes how the physical property of light shines or radi-
ates (ashraqa) from a self-luminous object (the sun, a star, a flame) in straight 
lines from every point on the surface of the object in all directions; how it 
rectilinearly extends (imtadda/extendere) through a transparent medium (air, 
water, glass); how it is reflected from smooth surfaces at a certain angle and in 
a given plane; and how it is refracted as it passes through surfaces separating 
media of different transparencies. The theory also takes care to describes how, 
once “fixed” (thabata) in the surfaces of illuminated opaque (nontransparent) 
objects, or in the body of transparent media considered as always endowed with 
a certain degree of opacity, the light will shine forth in exactly the way it does 
from self-luminous objects: that is, from every individual point where the light 
is fixed in the surface of the opaque object or in the incompletely transparent 
medium, on all straight lines that can be drawn from that point. In all of these 
statements the theory makes no appeal to any metaphysical entities or doc-
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trines and no reference to anything other than the observable phenomena. The 
resulting classification of all “lights” is consequently a classification of these 
phenomena: “essential light” is the observable light in permanently luminous 
bodies; “accidental light” is that observed in bodies when they are illuminated 
by external sources; “primary light” is what radiates from essential light; and 
“secondary light” that which radiates from accidental light. All of these “spe-
cies” or kinds of light are “found” to behave in exactly the same manner; and 
what are classified as opaque, smooth, or refracting surfaces are all “found” to 
behave in identical ways with respect to all kinds of light; and, finally, all lights 
are said to weaken in strength or intensity as they recede from their respective 
sources. Thus we are led to characterize the “physical” theory of light under-
lying Ibn al-Haytham’s Optics as a phenomenalist theory: the theory invokes 
no hidden entities or properties, and it is merely concerned to establish regular 
features of the behavior of light by reference to direct observation and experi-
mentation.

Color, in Ibn al-Haytham’s theory, is a distinct property of material, 
opaque bodies—distinct, that is, from light. Self-luminous objects—for 
instance the sun—are said to have “something that behaves like color,” or “of 
the nature of color,” which means that besides their intrinsic luminosity they 
are also opaque. Colors exist in other opaque bodies whether these are illumi-
nated or not. We do not know (we cannot know) whether colors extend them-
selves into the adjacent medium in the absence of light. But when illuminated 
they are “found” to “radiate” in the company of the illuminating light, with 
which they “mingle;” we can further verify that colors behave exactly as light 
does in rectilinear transmission, reflection, and refraction; and we know that 
they are perceived only when they enter the eye mixed with light. Thus all the 
experimental statements about light in the preceding paragraphs also hold for 
color, and Ibn al-Haytham’s theory of light is at the same time a theory of the 
distinct property called “color.”

In his theory of light and color, as well as in his theory of visual percep-
tion, Ibn al-Haytham employs the Aristotelian-Peripatetic term “form” (eidos/
ß¥ra) to refer to the physical properties involved. His experimental, phenom-
enalist account (in Optics, I, 3) of light and color as objective properties gains 
nothing in explanatory power by substituting “form of light” and “form of 
color” for “light” and “color.” The term “form” does not in fact occur until 
somewhat late in this account (Optics, I, 3[113]), when the discussion turns to 
color, and it is not always adhered to afterward. But the use of these expres-
sions was of course in keeping with Ibn al-Haytham’s declared aim to inject the 
mathematical study of vision with what he believed to be objective, physical 
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truth. He does, however, introduce a crucial refinement of the concept of form 
which is essential to the fulfilment of his program for a physical theory of light 
that is also amenable to mathematical treatment. (And as will be seen pres-
ently, “form” was the term inextricably linked to the natural-philosophical doc-
trine of minima naturalia which Ibn al-Haytham accepted.)21 This refinement 
appears in his concept of point-forms of light and color. The expression itself is 
not used by Ibn al-Haytham, but he repeatedly speaks of the “forms of points 
of light” and of color in the surfaces of visible objects, and it is these points of 
light and color that extend themselves on straight lines from illuminated points 
on the objects (whether these are self-luminous or not), and from points within 
an illuminated transparent medium like air or water.

The idea or, if we like, the assumption, is that, for any material body or 
part of a body, opaque or transparent, to carry, receive, repel or transmit the 
“form” or property light (or color) it has to be of a certain minimal size. If the 
body is “divided” further (say, by narrowing the naturally luminous (or illumi-
nated) part on the body’s surface, or by narrowing the aperture through which 
the light passes in a transparent body), the light will vanish. Thus the “point” 
from which light shines in all directions must have a minimal, finite size; and 
the “ray” proceeding from this “point” in the adjacent medium, what Ibn al-
Haytham calls “the least light” (aqall al-qal•l min al-∂aw <) or “the small-
est light” (adaqq al-daq•q min al-∂aw<, aßghar al-ßagh•r min al-∂aw <), must 
occupy a minimal finite width through the middle of which the mathematical 
ray can be imagined to pass.22

It will be remembered that Newton’s Opticks (1704), which had also 
deliberately presented a phenomenalist/experimentalist theory of light claim-
ing independence from any hypothesis about the “nature” of light, operated 
with what he regarded as a neutral concept of the “light ray” as “the least Light 
or part of Light” passing through a suitably small aperture. He, too, assumed 
that a minimal width of the passing light beam could be isolated by sufficiently 
dividing or narrowing the beam’s path, while additionally assuming that, by 
simultaneously allowing a “least part of light” to pass alone in the direction of 
propagation (e.g., by successively chopping off the beam perpendicularly to the 
direction of propagation—say, by means of a fastly rotating shutter), a single 
minimal part could be isolated [Opticks, pp. 1–2]. By substituting the concept 
of ray as “least part of light” for the covert reality of a light corpuscle, Newton 
thought he could claim to be presenting a purely experimental and nonhypo-
thetical, or phenomenalist theory which he hoped would accommodate a host 
of light properties including, not only rectilinear propagation, reflection and 
refraction, but also differential refrangibilities of color, diffraction/inflexion, 
fits of easy reflection and of easy transmission, and polarity—all of which he 
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believed to be inseparable and indeed “connate” dispositions of the light “ray.” 
Ibn al-Haytham’s position was made much easier by the severely limited reper-
toire of light phenomena that he had to deal with; and thus the simple concept 
or assumption of a least part, already supported by a widely accepted natural 
philosophy, was enough for endowing the mathematical ray, strictly an imag-
inary sraight line or a straight direction of activity, with solid physical real-
ity, that is, the phenomenal reality of a sensible, diffused quality of a material 
object. And, perhaps even more important, such a simple concept was all that 
he felt was needed for attacking the specific and basic problem of vision he set 
out to solve in his Optics. 

A theory of light and color as properties of material objects is not itself 
a theory of vision. But it is clear that Ibn al-Haytham’s theory, whatever the 
range of its intrinsic possibilities, is utilized in his Optics only to the extent 
required for establishing the new theory of vision. It has been stated above 
that the foundational theory of light is free from metaphysical presupposi-
tions, for instance such as those associated with the so-called thirteenth-
century Latin “perspectivists,” such as Roger Bacon, John Pecham, and Witelo, 
whose enthusiastic appropriation of Ibn al-Haytham’s ideas should not be 
allowed to obscure the fact that their basic commitment was to a very dif-
ferent project. Would it be equally true to assert that the theory also failed to 
envisage a mechanical structure of matter necessary for or at least enhancing 
the understanding of the behavior of light? In Books IV and VII of the Optics 
Ibn al-Haytham contemplates, and indeed explores at some length, “explana-
tions” (he calls them >ilal, causes or reasons) of optical reflection and refraction 
in terms of concepts of motion, speed, density, impact, resistance, repulsion, 
and the concept of i>timåd (endeavor, pressure), current in earlier and contem-
porary Mu>tazilite kalåm discussions; and all of these concepts are directly 
applied to small, solid, spheres projected against hard or yielding surfaces.23 
What should we make of these analogies (for that appears to be their function 
in the Optics) which, we know, later attracted fruitful attention in Europe, for 
example from Kepler, and especially from Descartes who found some of their 
mathematical features well suited to his own mechanistic view of the behavior 
of light? I pose this important question here although it is not essentially rel-
evant to my present concern, since these analogical explanations (or “compari-
sons,” as Descartes called them) do not play a part in Ibn al-Haytham’s account 
of vision. Ibn al-Haytham’s own opinion seems to be in fact that, strictly speak-
ing, considerations such as those involved in the study of mechanical collision 
of bodies or the penetration of yielding media did not properly belong in a trea-
tise on “optics” in the restricted sense of a theory of vision.24 
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III  An Image-oriented Theory of Vision

Ibn al-Haytham’s theory of vision was the only one circulating in Europe, up 
to the time of the Renaissance, that interposed between the center of vision 
and the seen object a surface on which a configuration of illuminated points 
of color directly corresponded to their arrangement in the field of vision. That 
interposed surface was the slightly flattened spherical surface of the crystal-
line humor, and the visually relevant class of points of light and color existing 
in it marked intersections of the surface with the straight rays proceeding from 
points in the field toward the center of the eye, or vertex of the geometrically 
defined “visual cone.” The theory maintained that “perception”/idråk/ compre-
hensio of any object in the field, and of all its visual properties (size, shape, dis-
tance, and the rest), consisted in a mental reading of this color mosaic (which, 
alone, is said to be first “sensed” or registered on the crystalline’s surface) 
after it has been transferred as a coherent whole through the humors of the eye 
and through the optic nerves, and after being ultimately presented to the brain 
where the final reading process was performed by a sense-faculty understood 
as a faculty of discrimination and judgment (tamy•z).

The analogy between the interposed surface in Ibn al-Haytham’s theory 
and the “picture plane” envisaged by the Renaissance perspectivists is worth 
noting: the analogy would not hold if Ibn al-Haytham’s eye functioned as a 
pin-hole camera (as in Leonardo) or as a lens-camera (as in Kepler). But the 
difference between a spherical surface in the one case and a plane surface in 
the other was of significance to the Renaissance perspectivists for whom there 
also remained the unique task of artificially constructing on a flat surface a pic-
ture which an external eye would read as a representation of objects deployed 
in three-dimensional space. In the present section of this chapter it will be our 
concern to investigate the status of what Ibn al-Haytham regarded, in Book 
I of the Optics, as a “form of the object” having the same order or arrange-
ment of parts on the surface of the crystalline as on the surface of the external 
object, and to consider the fate of that concept of ordered form, and indeed of 
the whole theory as we find it in Book I, in the light of experiments reported 
only in Book VII. 

Ibn al-Haytham’s was not of course the first image- or picture-oriented 
theory of vision; such had been for example the theory of the ancient atom-
ists in terms of coherent likenesses, or films or idols (eidøla), and the theory 
favored by Aristotle and by the Peripatetic tradition throughout the Middle 
Ages, in terms of forms received in the eye on the analogy of impressions made 
by a signet-ring in wax.25 But the theory proposed by the eleventh-century 
mathematician was the first to attempt a mathematical way of constructing a 
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physically produced “form” (ß¥ra) inside the eye that could serve as the imme-
diate basis for a full mental representation of the seen object. Henceforth, and 
until the publication of Kepler’s Ad Vitellionem Paralipomena in 1604, much 
of the history of optics as a mathematical theory of vision was concerned with 
problems suggested by Ibn al-Haytham’s attempted construction, and by prob-
lems arising from the new experiments fully preserved in the Arabic text and 
in the medieval Latin translation of Book VII. Am I ultimately contemplating 
a success story? Yes, but not one that is simple, straightforward, or historically 
uninstructive. After all, Ibn al-Haytham wrote some nine hundred years after 
Ptolemy; and four hundred years of rather active interest in vision were to pass 
between the transmission of Ibn al-Haytham’s Optics to Western Europe and 
the publication of Kepler’s treatise.

In Optics, I, 6 (“On the manner of vision”) Ibn al-Haytham clearly for-
mulates his problem as one of identifying the conditions, necessary and suf-
ficient, for obtaining the normal visual perception of the external world as a 
world of distinct objects and distinctly differentiated colors and shapes (I, 6[5–
11])—having previously argued from observation and experiment that we see 
as a result of an effect (athar, ta<th•r, infi>ål/ablatio, operatio, passio) produced 
in the eye by the agency of external light (Optics, I, 2 & 4) and having experi-
mentally determined the general characteristics of the behavior of light (I, 3) 
and having provided a general description of the structure of the eye adapted 
from the current anatomical literature (I, 5). Ibn al-Haytham agreed with the 
physicists’ view that visual perception was a matter of receiving forms, but he 
insisted that asserting this was not enough to explain “distinct” vision, given 
what he had just established about how forms of light and color arrive at the 
surface of the eye from points on the facing objects (in accordance with rules 
of emission and propagation) and what the forms must undergo as they pass 
through the eye’s layers (in accordance with the known rules of refraction). 
A full explanation, he argued, must provide means of somehow isolating the 
point-forms which originate at distinct points on the objects, but which must 
necessarily mingle together on the surface of the eye, and inside the eye itself, 
where they must make their first impressions.—This was not only Ibn al-Hay-
tham’s new problem; it was the real problem of distinct vision.

Now it is important to realize that, both in the way he understood his 
problem and in the way he went about finding a solution in Book I (and later 
in Book VII), Ibn al-Haytham simply accepted, on trust, the empirical evi-
dence claimed by Galen and by the dominant medical tradition up to Ibn al-
Haytham’s time—to the effect that the crystalline humor, alone among the 
parts of the eye, was the “first” or “principal” seat of visual “sensation.” The 
evidence consisted in the reportedly observed fact that vision ceased when the 
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crystalline alone was damaged or obstructed (Optics, I, 6[14, 15]; II, 2[10]).26 
I say “important” because this generally received doctrine proved to be a cru-
cial factor, and, as it turned out, a major “obstacle,” that seemed persistently 
to push Ibn al-Haytham’s thought into a certain direction. Since forms of light 
and color will come from all points on the facing objects to all points on the 
surface of the eye, they will all mingle together as they individually spread over 
the whole of that surface, and most of them will have been refracted before 
they have reached the crystalline’s surface, thus giving rise to more mingling 
among them; and further confusion of forms will take place again as a result 
of further refraction at the crystalline’s surface. “Therefore [as Ibn al-Haytham 
concludes in one of many passages to the same effect in Book I], the crystal-
line cannot perceive the visible object as it is [i.e., truly and distinctly] unless it 
perceives the color and light of each point on the object by means of the form 
reaching it through one point only on the surface of the eye” (I, 6[16], emphasis 
added). In other words, for a distinct perception/idråk (read: sensation/i˙sås or 
sense impression) of a given object to be at all possible at the crystalline’s sur-
face and within the crystalline’s body, only point-forms that have entered both 
the surface of the eye and the crystalline’s front surface at right angles can be 
considered to be visually effective. And for this necessary condition to be real-
ized, these two surfaces must be considered concentric at the region cut off by 
the “visual cone” defined by the width of the pupil, namely the cone with ver-
tex at the center of the eye, and base at the object. As for the forms that strike 
the crystalline’s surface after having been refracted at the eye’s surface, they 
are (in Books I & II) rendered ineffective by virtue of two assumptions. The 
first, expressed briefly in Book I, invokes the superior effect of perpendicular 
action (I, 6[24]). The other, much more significant and of greater consequence 
for the theory as a whole, postulates the crystalline’s natural disposition to 
“sense” only forms that go through it perpendicularly, along the lines of the 
visual cone.27 As Ibn al-Haytham spells out this second assumption, the crys-
talline, as a transparent body, will refract the forms (or rays) that reach it on 
lines intersecting the radial lines, and this refraction will take place in accor-
dance with the rules of refraction; but, as a sensitive body, it will only take 
notice of the unrefracted forms that strike its surface at right angles and that 
subsequently pass through its body along the radial lines. Therefore, what the 
crystalline senses in its surface and throughout its body is a total “form of the 
object” consisting of a configuration of point-forms of illuminated color that 
correspond one-to-one with all their distinct points of origin on the object seen; 
and it is this sensed form that will eventually reach the common nerve where 
two total forms from both eyes will be united and, finally, perceived by the ulti-
mate sentient faculty (al-˙åss al-akh•r/ultimum sentiens) that resides in the 
front of the brain.
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Ibn al-Haytham has an answer to one who might object to his argument 
as an example of ad hoc conjecturing or hypothesizing, that is, as something 
perhaps unworthy of the mathematizing natural scientist he claimed to be. 
Such an objection, he replies, would not be really justifiable, considering that 
other privileged lines of activity are known to be attested in the natural world: 
heavy bodies freely fall only in lines normal to the earth’s circumference, heav-
enly bodies move only in circles, and light itself freely travels only in straight 
lines (Optics, I, 6[43]).—He has a point. It is clear, however, that in choosing to 
privilege one natural mode of receptivity in the crystalline over another he was 
undoubtedly swayed by the widely received doctrine that assigned sensitivity 
in the eye to the crystalline. 

We should note that while Ibn al-Haytham is certainly concerned to 
explain distinct vision, he does not speak of distinct forms (or images) in the 
eye actually portraying the array of light and color that distinctly appear on the 
object. These forms are real, being the effect physically produced in the eye 
by the incoming forms of light and color. And, in accordance with his physics 
of light and color, he characterizes that effect in the eye as actual illumination 
and coloration inside the eye. But as the forms arrive on top of one another 
at the surface of the eye, and subsequently on the surface of the crystalline, 
they become confused or “mixed” (mumtazija/permixtae) and therefore do not 
by their combined physical effect inside the eye represent their original dis-
tinct distribution on the object. Ibn al-Haytham repeatedly speaks, however, of 
forms in the eye that have the same arrangement of parts as the forms (or con-
figurations of light and color) existing in the objects (Optics, I, 6 [20, 27, 33, 
38, 40, 63, 66]). These, as we have just seen, are the forms geometrically dis-
tinguished by means of the perpendiculars drawn from the object-points to the 
center of the eye or vertex of the visual cone. But for their distinct perception, 
Ibn al-Haytham simply invokes the power of perception itself, thus by-pass-
ing the need for a segregating optical apparatus (such as a pin-hole arrange-
ment or a focusing lens), and immediately and precipitously embarking on a 
psychological explanation of vision.—So, here again, we recognize the extent 
to which Ibn al-Haytham’s theory in Book I of the Optics depended on the sec-
ond, physiological assumption referred to above (p. 98)—an assumption that, 
we shall now see, Ibn al-Haytham was led to modify in an important passage at 
the end of chapter 6 in Book VII that explicitly and emphaticaly makes room 
for refraction as a constant factor in vision.28 

That we see objects outside the cone of vision is a fact that Ibn al-Haytham 
demonstrates in that passage by a simple experiment (figure 4.1). He places a 
slender object (a surgeon’s “probe”/m•l/Gr. m∑l∑) close to the outer corner of 
one eye while the other eye is closed: the probe will be visible even when it is 
definitely located outside the limits of the geometrical cone as defined by the 
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narrow pupil. Thus the light reaching the crystalline from points on the probe 
will have arrived at the crystalline’s surface on lines all of which intersect the 
lines of the cone, and, therefore, all are inclined to the eye’s surface (i.e., the 
portion opposite the pupil) where they will have been refracted to points on the 
crystalline’s surface where, we are told, sensation will first take place. In these 
circumstances, then, as Ibn al-Haytham concludes, objects are seen only by 
refracted forms or rays.29

Other experiments demonstrate that all objects within the cone are also 
seen by refraction as well as being visible by the agency of the light or forms 
that arrive unrefracted at the crystalline’s surface in the manner explained in 
Book I (figure 4.2). A needle MN is held close to one eye against a white wall 
AB. Let E be the center of the eye, GH the surface of the eye, and TV the
parallel surface of the crystalline; G, E, H thus define the visual cone. CD, 
the area on the white background that is concealed by the opaque needle MN, 
cannot be seen by rays perpendicular to the eye’s surface, such as PY, pro-
ceeding rectilinearly from points on CD toward E. To be visible, the light 
from points on CD would have to arrive at the eye’s surface on non-per-
pendicular lines, such as PMS and PNS’, and must therefore be refracted 
through GH before it strikes the crystalline’s surface (where it will be refracted 
again). However, as Ibn al-Haytham observes, the eye will actually per-

Figure 4.1 (constructed from the text)
Probe experiment. Only refracted forms from F, placed outside the geometrical cone 
defined by GEH, will reach the crystalline’s surface KL. All will be “sensed” by the 
crystalline, and all will be “perceived” by the “sensitive faculty” as located on the per-
pendicular FE, itself considered a “radial line” proceeding from E though not one of the 
lines constituting the cone that is limited by the pupil’s width.
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ceive the screened area CD, though not as clearly as it does the neighbor-
ing areas on AB, but will perceive it as if it were visible through a transparent 
body much broader than the needle’s diameter. The experiment thus shows 
that while the eye sees the near side of the needle by means of forms reach-
ing it along the radial lines, it can only see CD by lights or forms that have 
been refracted at the eye’s surface. Hence the impression of seeing both the 
needle and the screened area at the same time, as if the much closer needle 
had the effect of an interposed transparent body—a conclusion which Ibn al-
Haytham confirms further by replacing the thin needle by an opaque object broad 
enough to prevent the forms/rays from reaching the crystalline’s surface from
points on the screened area by refraction. He finally concludes that what has 
been shown with regard to points on CD must be true of all visible points 
on the white wall and of all points included in the visual cone as previously 
defined.30

Aware that he has just said and done something new, Ibn al-Haytham 
proudly declares, at the end of chapter 6 in Bk VII, that no one before him, in 
ancient or in recent times, had recognized the fact that “all that sight perceives 
it perceives by refraction.”31

Thus we are finally led to ask: How does the introduction of an essential 
role for refraction as a “universal cause” or explanation (>illa kulliyya/causa 
universalis)32 in Book VII affect the theory of vision presented in Book I, 

Figure 4.2  (constructed from the text) 
Needle Experiment
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which the later account obviously makes more problematic? The description of 
the above experiments in favor of this later addition is preceded by a “general 
statement” in the course of which we read the following:

[a] We have shown in the First Book that if the sensitive organ [i.e., crystal-
line] were to sense, through (min) every point on its surface, every form that 
comes to it, then it would sense the forms of visible objects as mixed with 
one another and not distinctly. This indicates that the sentient organ does not 
sense the forms except through (min) the perpendiculars to its surface only, 
and that if it senses the forms through the perpendiculars to its surface then 
the visible objects will be distinguished and none of their forms will (appear) 
to it mixed. And we have shown in the present Book [VII] that refracted 
forms can be perceived by sight only on (>alå) the perpendiculars drawn from 
the objects to the surfaces of transparent bodies. All that being so, the forms 
refracted through the layers of the eye must be perceived only on the perpen-
diculars drawn from the objects to the surfaces of the eye’s layers. 

[b] Now, these perpendiculars are the lines that issue from the center of the 
eye. Therefore sight will perceive all forms refracted through the eye’s lay-
ers and sense them, but will perceive them on the straight lines drawn from 
the eye’s center. The forms of all objects facing the portion of the eye’s sur-
face that lies opposite the uvea’s aperture will thus occur in this portion of 
the eye’s surface, and will be refracted through the transparency of the eye’s 
layers, and reach the sentient organ, viz. the crystalline, and the crystalline 
will sense them, and the sensitive faculty will perceive them on the straight 
lines joining the eye’s center and those objects.

[c] I mean that the form of every point on every object facing the portion of 
the eye’s surface that lies opposite the uvea’s aperture will occur in the whole 
surface of this portion, and will be refracted from the whole of this portion 
and reach the crystalline humor, and the crystalline humor will sense all that 
will reach it of the form of every one of these points, and the sensitive faculty 
will perceive all that will reach the crystalline of the form of each point on 
the single line that joins the eye’s center and that point.—That is the manner 
in which sight perceives all visible objects.33

In the paradigmatic representation of optical refraction here cited in the 
underlined sentence in paragraph [a]—a representation transmitted by Ptol-
emy’s Optics (in terms of visual rays)34 and adopted by Ibn al-Haytham and 
fully stated earlier (in terms of light rays) in the same chapter from which the 
above passage is quoted—the eye sees an object by refraction on the extension 
of the refracted ray (Ptolemy’s incident ray) at the point where it intersects the 
perpendicular from the object to the refracting surface. In that representation, 
both the direction of the visible “image” (called khayål by Ibn al-Haytham) 



A. I. Sabra 102 Ibn al-Haytham’s Revolutionary Project in Optics 103

and its distance from the eye are determined. Note, however, that Ibn al-
Haytham’s citation here of the Ptolemaic rule specifies the direction but not the 
perceived distance of the form/ß¥ra: the form arriving at the crystalline’s sur-
face and refracted through the crystalline’s body is said to be perceived “on” 
(Arabic >alå/Latin in) the perpendicular from the object to the crystalline’s sur-
face—period. Thus, neither in Ibn al-Haytham’s “general statement,” nor in his 
subsequent experimental reports, is anything said about the meeting or inter-
section, of refracted rays or their prolongations, with the perpendicular from 
the object to the crystalline, this perpendicular being one of the radial lines 
drawn from the eye’s center. And there is no mention in these reports of an 
“image”/khayål, the word consistently used elsewhere for a form/ß¥ra that is 
seen behind a reflecting or refracting surface. 

What, then, do we finally learn in Book VII with regard to the perception 
of objects whose light has reached the surface of the eye, by way of rectilinear 
propagation or by reflection or refraction?—Answer: (1) that these objects are 
in all cases “perceived” by refraction; (2) that some of these objects (namely 
those inside the radial cone defined by the size of the pupil) will generally, 
though not always, also make their effect by perpendicular forms or rays; but 
(3) that all forms, no matter how they have arrived at the eye, will be “sensed” 
by the crystalline and “perceived” by the “sensitive faculty” as forms of objects 
situated on the perpendicular from the object to the crystalline’s surface. 

As a consequence of (1)–(3), we learn further, and contrary to Book 
I, that (4) it is no longer a condition of distinct vision that a given point on a 
visible object be perceived from a form reaching the crystalline from a sin-
gle point only on the eye’s surface (see above, p. 98); rather, the light from an 
object-point, which always shines in the form of a cone whose base covers 
the portion on the eye’s surface opposite the pupil, will always stimulate the 
crystalline’s sensitivity by means of all the forms that may reach it from any 
point on that portion. And, finally, we learn (5) that the concept of “visual 
cone” has been definitely though quietly re-defined to include lines, such as EF 
in figure 4.1, which is now called a radial line “by way of extension” (>alå †ar•q 
al-isti>åra) “because it resembles [the traditional radial lines] in that it issues 
from the center of the eye.”35

The “obstacle” created by the role traditionally assigned to the crystal-
line humor as the sensitive part of the eye thus remains. But the experiments 
described in the Optics, Bk VII, Ch. 6, along with their stated conclusions, 
now point to new problems (including of course the question as to where on 
the perpendicular is the object seen) and to possibilities which some of Ibn al-
Haytham’s readers in the Muslim world (e.g., Kamål al-D•n al-Fåris•) and in 
Europe (especially Kepler) were led to grapple with.36 
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IV A New Role for Psychology: The Example of Depth Perception

In Book II of the Optics, having already argued against the visual-ray doctrine 
as futile (>abath wa fa∂l/superfluus et otiosus, Optics, I, 6[54]=Risner 14:26) 
and even “impossible”/musta˙•l (Optics, I, 6[59]), Ibn al-Haytham goes on to 
expose the argument levelled by “mathematicians” [and by Galen] against the 
view preferred by the “proponents of physical science”: “. . . if [so the argu-
ment went] vision takes place by means of a form which passes from the vis-
ible object to the eye, and if the form occurs within the eye, then why does sight 
perceive the object in its own place outside the eye while its form exists inside 
the eye?” He answers: “Those people have ignored the fact that vision is not 
achieved by pure sensation alone, and that it is accomplished only by means 
of discernment and prior knowledge (bi-al-tamy•z wa taqaddum al-ma>rifa/per 
cognitionem et distinctionem antecedentem—Risner 39:3–4), and that with-
out discernment and prior knowledge sight would achieve no vision whatever 
(lam yatimma li-l-baßari shay<un min al-ibßår/ non compleretur in visu visio), 
nor would there be perception of what the visible object is at the moment of 
seeing it” (Optics, II, 3[71], emphasis added). This passage, occurring at the 
beginning of a long discussion of depth perception, points out, clearly and suc-
cinctly, the aim and scope of the whole project of the Optics. Ibn al-Haytham 
is saying that no theory of visual perception in terms of the reception of forms 
or images (which according to him are analysable in terms of the effect of light 
radiation in the eye) can do without the support of a theory of vision which 
is essentially psychological in character. It is therefore no accident that psy-
chological investigations have come to occupy such a considerable part of the 
Optics: Book II, which is wholly devoted to a general theory of the psychology 
of vision; Books III and VI, on the errors of rectilinear and of reflected vision 
respectively; and the parts of Book VII that deal with the errors of vision by 
refraction, including Ibn al-Haytham’s new explanation of the “moon illusion” 
as a psychological phenomenon (Sabra, 1987, 1991/92, 1995/96).

There is, therefore, a necessary connection between Ibn al-Haytham’s 
theory of vision as an image-oriented theory and the particular emphasis he 
lays on psychology. More than that, this connection can easily be shown to 
have substantially influenced the very character of his psychological explana-
tions. If, as Ibn al-Haytham believed, distinct vision required a distinct image 
as the only accessible message from the object, then the mental activities of 
“recognition,” “comparison,” “discernment,” “judgment,” and “inference,” 
as operations accompanying every act of visual perception beyond the mere 
reception of sense impressions, must be concerned in the first place with the 
image itself as the sole optical datum. The significance of this remark can per-



A. I. Sabra 104 Ibn al-Haytham’s Revolutionary Project in Optics 105

haps be best appreciated when we compare Ibn al-Haytham’s psychological 
explanation of depth perception with visual-ray accounts such as we find in 
Ptolemy and Galen.

Before we do this, let us note briefly that the form/image finally pre-
sented in the common nerve to the sense faculty, though still different from 
the image produced by a pin hole or a lens, can be said to be distinct in a sense 
that is not applicable to forms/images in the crystalline. The reason is that the 
form/image in the common nerve has already been disengaged (selected and 
isolated) from the countless forms with which it was mixed before it was sent 
off, alone and undistorted, to the common nerve. Ibn al-Haytham thus speaks, 
in Optics, II, 3[47], of the effect exerted by the arriving form on the pneuma 
that fills the common nerve as one of luminosity and coloration, but now these 
qualities are understood to represent, distinctly and accurately, their distribu-
tion on the object: “The form then reaches the cavity of the common nerve, 
whereupon that part of the sentient body [= pneuma] in that cavity where the 
form of the object has arrived becomes colored by the color of that object and 
illuminated by its light. If the object is of one color, then that part of the sen-
tient body will be of one color; if the parts of the object have different colors, 
then the colors of the portion of the sentient body that is in the cavity of the 
common nerve will be different.” 

As A. Lejeune has already demonstrated in 1948, Ptolemy’s explana-
tion of the perception of the distance of a visible object along the stretch of the 
visual ray, this distance being a factor in discerning the object’s localization in 
space, amounted to nothing more than the assertion that estimation of the dis-
tance was simply due to our consciousness of the length of the ray we have sent 
out to grasp the object (Lejeune, 1948, IV.1, pp. 86–95; Ptol. Opt., II, [26]). Not 
much of an explanation, perhaps, to a modern mind, but it must have counted 
as one of the points actually supporting the widely received visual-ray hypoth-
esis, both in antiquity and in the early Arabic tradition, and even later in Islam 
and in Europe. It will thus be interesting to refer here to one of the most reveal-
ing passages in Galen’s De placitis Hippocratis et Platonis where he defends 
the view adopted by the “geometers,” in words reminiscent of the position and 
language found in Ptolemy’s treatise. Galen states first that “the proper object 
of sight, which I also call its primary sense-object, is the class of color. For col-
ors are the first thing it perceives, and it perceives them by itself, and it alone 
of all the sense organs can perceive them, . . . sight alone can discern (syndia-
gignøskein) along with the color of the thing seen its size and shape, . . . There 
is a detailed discussion of such things in the fifth (book) On Demonstration. In 
any case, sight can discern, in addition to other things, the position (thesin) and 
distance (diast∑ma) of the colored body. . . . I demonstrated in what was said 
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there [in the fifth (book) On Demonstration] that everything supports the view 
that the observed body is seen in the place where it actually is. This is clearly 
revealed also through sense-perception itself, and for that reason the geome-
ters give no proof of it but posit it as self-evident;. . . ,” emphasis added.37

Reading Ibn al-Haytham on the question of how an object is seen in its 
own place (maw∂i>/locus) we find ourselves in an entirely different framework 
of explanation. The question is split into others concerning the perception of 
distance as such or remoteness/bu>d/ex remotione, direction/jiha/ex parte uni-
versi, and the magnitude or measure of distance/miqdår or kammiyyat al-bu>d/
ex quantitate remotionis (Optics, II, 3[67]=Risner 38:42–43). The same dis-
tinctions (or some of them) are in Ptolemy (Ptol. Opt., II, [26]; Lejeune, 1948, 
pp. 87ff). But now we are treated to an incomparably rich discussion the like 
of which in scope and sophistication is not found in earlier writers in Greek 
or Arabic. Most important in this discussion is the fact that it is dominated 
throughout by strict adherence to the various elements of an integrated theory, 
including especially the all-important element represented by the newly argued 
concept of an optical image in the common nerve. The passage quoted earlier 
(p. 104) from Optics, II, 3[71], continues as follows: “For what the object is is 
not perceived by pure sensation, but [either] by recognition or by resuming the 
[original] discernment and inference at the [current] moment of vision. Thus 
if vision were effected by pure sensation alone, and if all perceptible proper-
ties [size, shape, etc.] in the visible objects were perceived only by pure sensa-
tion, then the object would not be perceived where it is unless it was reached 
by something which touched and sensed it. But if vision is not effected by pure 
sensation alone; and if all perceptible properties of visible objects are not per-
ceived by pure sensation; and if vision is not accomplished without discern-
ment, inference, and recognition; and if many of the visible properties are 
perceived only by discerment; then to perceive a visible object in its own place 
there is no need for a sentient [thing] to extend to it and touch it.”

In this context, the sentient [thing]/al-˙åss is of course the pneuma or 
visual flux, and it should be clear against whom this argument is addressed. 
Other passages in the Optics also make it clear that by pure sensation/mujarrad 
al-˙iss Ibn al-Haytham means nothing more than the light and color excita-
tion in the crystalline and in the common nerve—not even the awareness of 
light as strong or weak, or the awareness of color as red or blue, these modes 
of awareness being actually “judgments” involving the various mental opera-
tions mentioned (II, 3[49–66]). But the crucial point to be borne in mind (espe-
cially in comparisons with Aristotle and Ptolemy) is that these operations do 
not only presuppose “pure sensation” as “affection” (infi>ål/passio) suffered by 
the eye. They are applied in the first place to features of the “ordered” form/
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image that has been transported to the common nerve. For although the imme-
diate effect of light, as Ibn al-Haytham tells us, is a sensation/excitation “of the 
nature of pain” and can, as such, share the manner of nervous transmission of 
painful and tactile excitations (I, 6[67]),38 it is also a sensation of luminosity 
and colors and their configuration (I, 6[81]). And, as such, the sensation must 
be mediated through the visual apparatus by a succession of physiological pro-
cesses according to definite modes of transmission: that is, along segments of 
the radial lines within the crystalline, then on suitably refracted lines within 
the vitreous, and finally along the fibers stretching through the curving optic 
nerve—all of these differentiated modes of transmission being designed to pre-
serve the integrity of the object’s form/image (I, 6[80–81]).39 

Ibn al-Haytham calls those features in the image “signs” or “cues,” 
amåråt/signa (Optics, II, 3[22, 24, 45]). Thus the size of the image on the crys-
talline’s surface (equivalent to the visual angle) can be a cue to the object’s size, 
the image’s shape a cue to the object’s shape, the image’s brightness or obscu-
rity a cue to the object’s nearness or remoteness, and so on. Hence the char-
acteristic complexity we find in the psychological explanation of estimating 
distance in the Optics. First, we are told that, as with all properties of visible 
objects other than their luminosity and color, distance is perceived separately 
only by discernment, but as a result of accumulated experience it is perceived 
by “prior knowledge” [72]. Certain experiences (opening and closing the eye-
lids, turning our eyes toward or away from the object seen) lead to the judgment 
that the object is spatially separate from us [73]. With time, this discernment, 
necessary at first, becomes automatic or, as Ibn al-Haytham puts it, “estab-
lished in the soul” [74]. While objects are always seen to be at some distance 
from the eye, the magnitude of their distance is not always “ascertained.” If an 
object’s distance lies along a sequence of contiguous bodies, then the distance’s 
magnitude will be perceived by estimating the size of the intermediate bodies 
[76], and this judgement will be correct (or nearly so) when the distance is a 
moderate one. A correct judgement of distance will thus depend on an accurate 
(or nearly accurate) estimation of size [76–77]. This is supported by observa-
tions of clouds below the tops of not very high mountains, and is further con-
firmed by experiments on the ground [79–80]. Such “inferences,” however, are 
not possible in the absence of intermediate bodies, as when we look at a star 
high up in the sky [84], and the general conclusion is drawn that distances can 
be ascertained in magnitude only when they are moderate in size, and only 
when they stretch along a series of visible objects whose sizes are ascertain-
able [86].

What happens then when the distances of objects cannot be “ascer-
tained”? The answer is that “the faculty of judgement immediately conjectures 
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their magnitudes by comparing their distances with those of [similar] objects 
which sight has previously perceived and [the magnitudes of whose distances] 
it has ascertained” [87]. Strictly speaking, this is a comparison between cur-
rently perceived “forms” and “similar forms” previously perceived and ascer-
tained. “That [says Ibn al-Haytham] is the limit of what the discerning faculty 
is capable of in the process of attaining perception of the magnitudes of the 
distances of visible objects” [88]. Accompanying the immediate perception of 
remoteness (distance as such) there is, therefore, also a perception of the mag-
nitude of that remoteness, which is either ascertained or conjectured [90]. And, 
with regard to familiar objects “recognized” from familiar distances, there will 
be “no great discrepancy” between the conjectured magnitude of their dis-
tances and the real magnitude [93]. 

It remains to show how the size of an object is accurately estimated by 
sight, this being a condition for ascertained perception of distance. In his dis-
cussion of size (Optics, II, 3[135–171]) Ibn al-Haytham begins by accepting 
Ptolemy’s arguments (against “the majority of the mathematicians”) in support 
of the view that size is determined not by the angle of vision alone but also 
by the object’s perceived distance and orientation (wa∂>/situs), citing, among 
other observations, what is now known as size-distance constancy [135–140]. 
The angle, or equivalently, the area cut off on the eye’s surface by the visual 
cone, remains a basic criterion/aßl/radix for judging size, which itself varies in 
magnitude with the object’s distance [142–143]. How, then, is the length of the 
cone determined? We are back to the question simply answered in the visual-
ray theory by postulating immediate consciousness [144–148]. The question 
is now crucial especially with regard to “ascertained,” as distinguished from 
“conjectural,” distances. And it is at this point that Ibn al-Haytham’s consid-
erations rise to a still higher level of elaborateness by correlating angles of 
vision, or forms of objects in the eye, with experiences that furnish non-optical 
measures of magnitude. He proposes, in effect, a sort of unconscious inference 
that leads step by step from estimating distances of objects close to our feet to 
judging distances of farther and farther objects on the ground which subtend 
progressively decreasing angles at the center of the eye [149–156]. The first 
distance-length, that of a point on the ground next to my foot, is measured by 
my height; the size of an immediately adjacent area on the ground that has been 
measured (and correlated with corresponding angles) many times by my step-
ping on it or by stretching my arm to it. This gives me an estimate of the length 
of the ray reaching my eye from a point displaced by a given amount from the 
first. And so on, by continually comparing ray-lengths with angles (or corre-
sponding sizes of their images in the crystalline), we get to form notions of 
the size of terrains separating us from the objects whose distances we come to 
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judge, first by calculation, and subsequently by recognition based on repeated 
experiences and on repeated and unintended verifications. Ibn al-Haytham 
finally adds that by “estimation” of distances he does not mean anything quan-
titatively precise, but simply the process of forming a standard in our imagina-
tion for making further estimations.

V Conclusion 

The seven books of Ibn al-Haytham’s Optics constitute a unified project with a 
single, continuous argument running through them. In the working out of this 
project the fundamental concept of form is Aristotelian, and so is the basic 
idea of vision as something initiated in the perceiver by the impression made 
in the eye by a “form” combining the qualities of luminosity and color. But the 
punctiform analysis of forms (Vasco Ronchi’s apt term) as a means of bringing 
points of the object’s light and color into the eye, and as a guide leading them 
through the eye’s tunics and humors, is certainly not. Ptolemy is believed to 
have presented in the lost Book I of his Optics a theory describing the role of 
external light, as distinguished from the radial emission of visual “flux” from 
the eye, but we do not have a precise idea of the details of that theory (though 
possibly more can be learned about it by excavating the Arabic sources). At any 
rate, Ptolemy’s account of the role of external light (whatever its precise nature) 
was clearly intended to work in company with, and not as a substitute for, the 
explanations in terms of the visual-ray doctrine that actually dominates the rest 
of his treatise. Ibn al-Haytham proposed, in contrast, a theory of light radiation 
whose purpose was to do away with visual radiation altogether by relegating 
to itself all functions previously assigned to the visual ray as a physical entity, 
while retaining its use as a geometrical abstraction. His theory of vision further 
employed the concept of an optical image in the eye, the construction of which 
according to the established behavior of light had not been part of either the 
Aristotelian or the Ptolemaic program. And an immediate consequence of his 
attempts in this direction was his implementation of a persistent psychological 
approach to the whole problem of visual perception.—It is evident that the syn-
thesis worked out in Ibn al-Haytham’s Optics incorporates elements of various 
sorts which it has derived from earlier treatments of vision. It is also evident 
that those elements are now made to serve the aims of an entirely new project 
in which they perform new functions. 

One inherited element in particular, the role assigned to the crystalline 
humor as the sensitive part of the eye, had two distinct consequences. The first 
was that it encouraged (perhaps even pushed) Ibn al-Haytham to postulate a 
geometrical structure of the eye that retained the basic geometry of the visual 
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cone whose lines alone defined the course of efficacious rays (or point-forms) 
within the crystalline. Thus he lost sight of a crucial fact of ocular physiol-
ogy—which is not to say that the “fact” was lying out there for all to see! The 
experiments described by Ibn al-Haytham in Optics, Book VII, chapter 6, some 
of whose striking conclusions he boldly articulated and accepted, were strictly 
incompatible with the hypotheses developed in Book I in terms of perpen-
dicular rays. These experiments appear, however, to have come late to Ibn al-
Haytham’s notice. And although they eventually led him, explicitly, to widen 
the visual cone in order to admit the experimentally proven efficacy of refracted 
rays within the eye, he thought he could accommodate them by appealing once 
more to psychology—which brings us to the second consequence, namely the 
new emphasis on psychological explanations.

In and of itself the new level of emphasis on psychology in Ibn al-
Haytham’s Optics was historically an important development that has recently 
attracted the attention of psychologists and historians of psychology. The 
emphasis allowed him to open a new chapter in the history of the systematic 
study of vision. But the impressive psychological observations and explora-
tions that we find displayed throughout the book were also frequently overbur-
dened. As an element in a complete explanation of the act of visual perception, 
the psychological approach was of course appropriate, indeed indispensable; 
but, in Ibn al-Haytham’s treatise, psychology was required to accomplish more 
than it could possibly achieve by itself. This requirement had a lot to do with 
the “obstacle” we noted in Section III, and the difficulties involved are already 
evident in Ibn al-Haytham’s theory of direct vision, for example in his treat-
ment of depth perception. But the inherent problems become especially acute 
in Ibn al-Haytham’s treatment of specular images, where we find him following 
an admirably consistent but ultimately doomed course. I believe that Kepler 
at one point became aware of these problems which, as I believe, he correctly 
diagnosed, and which he was able to overcome by removing the “obstacle.” It is 
my intention to pursue these last observations in a sequel to this discussion.

Notes

1. Prominent examples of mathematicians/astronomers who contributed to medical lit-
erature are Thåbit ibn Qurra and Ibråh•m ibn Sinån in the ninth and the tenth century 
AD, Ibn al-Haytham and al-B•r¥n• in the eleventh, Naß•r al-D•n al-ˇ¥s• and Qu†b al-D•n 
al-Sh•råz• in the thirteenth. Thåbit (whose medical writings were considerable) is also 
known to have practiced medicine, as did other members of the Ibn Qurra family.—
For Thåbit see Ibn al-Qif†•, Ta<r•kh al-˙ukamå<, ed. J. Lippert, Leipzig, 1903, esp. pp. 
116–19; F. Sezgin, GAS, III (Medizin, etc.), pp. 260–63.—Work number 44 in the auto-
graph list of writings by Mu˙ammad ibn al-Óasan ibn al-Haytham in the fields of “nat-
ural philosophy and metaphysics,” all composed before 10 February 1027, consisted of 
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summaries/epitomes (jumal wa jawåmi>) of 30 works of Galen; see IAU/Müller, 1882, 
II, p. 95.—For al-B•r¥n• see C. Brockelmann, Geschichte der Arabischen Litteratur, I 
(Leiden: E.J. Brill, 1943), p. 627 (no. 27), S II(Leiden, 1937), pp. 874–75; S.H. Nasr, 
al-B•r¥n•: An Annotated Bibliography, Tehran, 1973, pp. 101–03.—The medical activi-
ties of Sinån ibn Thåbit ibn Qurra and Ibråh•m ibn Sinån are mentioned in IAU/Müller, 
1882, I, pp. 224, 226.—For ˇ¥s• and Sh•råz• see Brockelmann, GAL, S II(1938), pp. 
932-33, and II(1949), pp. 274–75, S II, pp. 296–97.

2. For Óunayn’s The Book of the Ten Treatises on the Eye, see Meyerhof, 1928. The 
integral text of A˙mad ibn >°så remains in manuscript (an edition is being prepared by 
E. Kheirandish and A.I. Sabra). Two Arabic MSS are: Istanbul, Laleli 2759(2), and 
Ragip Pasha 934; for dates and discussions of Ibn >°så, see the Introduction to Ibn al-
Haytham, 1989, vol. II; Rashed, 1997; Kheirandish, 1999, vol. I. The surviving optical 
writings by al-Kind• are edited, translated into French and annotated in Rashed, 1997, 
which includes a revision by J. Jolivet, H. Sinaceur, and H. Hugonnard-Roche of Liber 
Jakob Alkindi De causis diuertitatum aspectus, first edited by A. Björnbo and S. Vogl—
see Björnbo & Vogl, 1912. Also included in the 1997 volume is the work by Qus†å ibn 
L¥qå on specular images, F• >Ilal må ya>ri∂u f• al-maråyå min ikhtilåf al-manåΩir. 

3. Galen/De Lacy, 1980, Second Part, Bk vii, esp. pp. 453ff. See n. 37 below.

4. See, for example, Óunayn, Ten Treatises, in Meyerhof, 1928, Arabic Text: pp. 91; 
77, 80; 79, 81. 

5. Óunayn, Ten Treatises, in Meyerhof, 1928, p. 95 (where manåΩir is translated as 
“glances”); Kind•, “Rectification,” in Rashed, 1997, p. 167, line 11, and passim; and 
Qus†å ibn L¥qå, >Ilal, in Rashed, 1997, p. 583, lines 17–18.

6. A. Björnbo & S. Vogl, 1912, pp. 42ff.

7. Rashed, 1997, p. 173, lines 19–25.

8. Lejeune, 1948, pp. 22–24.—The work of the tenth-century philosopher, Abu ’l-
Óasan al->Åmir• (d. 382/992) (see al->Åmir•/Khal•fåt, 1988), Qawl f• al-baßar wa al-
mubßar (“On Vision and the Object of Vision”), betrays certain interesting similarities 
of ideas and terms with Ptolemy’s Optics which are not easily detectable in the ninth-
century writers referred to above. He mentions Ptolemy’s name (but not his Optics) side 
by side with Euclid’s as two “philosopher-geometricians” (˙ukamå< al-muhandis•n) 
who upheld a theory according to which [visual] “light” goes out of the eye in the shape 
of a cone to the “sensible color;” this light is said to be “strengthened” by the external 
light before it is “obstructed” (ya>¥quhu) by the “colored body,” thereby causing the 
“form of the color” to be fastened (tan>aqidu) to the end or base of the cone, whereupon 
the “light” turns back (yankusu mun>akisan) to the source/origin (yanb¥>) of the cone.—
He then attributes this account of ittißål (contact between the organ of sight and the 
object of vision) also to “Galen and his followers among physicians” p. 435.—He offers 
(p. 419) a list of seven “visible properties” (al-ma>ån• al-mar <iyya), in this order: (1) 
color, (2) size, (3) shape/figure (shakl), (4) number, (5) distance, (6) the state of being at 
rest or in motion (hay<at al-suk¥n wa al-˙araka), and (7) substance (jawhar). Three of 
these (here numbered 4, 5, 7) are not included in Ptolemy’s formal list of res videndae in 
his Optica (II, [2]: “Dicimus ergo quod uisus cognoscit corpus, magnitudinem, colorem, 
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figuram, situm, motum et quietem” (Lejeune, 1989, p. 12, and n. 2), although 4 and 5 are 
actually discussed by Ptolemy. On the other hand, two visible properties in Ptolemy’s 
list, namely corpus/jism/corporeity (which should not be confused with >Åmir•’s no. 7: 
jawhar), and situs/wa∂>/local position, are missing from >Åmir•’s list.

Also according to >Åmir•, some of the visible properties are perceived by them-
selves/ bi-al-dhåt (these are: color, size, shape, being at rest or in motion), while others 
(substance, number, and distance) are perceived “incidentally”/bi-al->ara∂; only color 
is perceived “firstly” (mudrakun idråkan awwaliyyan), whereas size, shape, and the state 
of being at rest or in motion are each perceived “by second intention”/bi-al-qaßd al-
thån•. Some of these expressions correspond to similar ones in Ptolemy: compare, for 
example, >Åmir•’s firstly and by second intention, with Ptolemy’s primo, and sequenter, 
respectively (Ptol. Opt., II, [3, 6].

The above similarities and discrepancies immediately pose the question as to what 
might have been >Åmir•’s source(s). I hope to discuss this question in more detail in 
another publication. Here I am inclined to postulate a Peripatetic origin for these terms 
and concepts in both Ptolemy and >Åmir•. 

9. For Ibn >°så, see Ibn al-Haytham, 1989, vol. II, Intro., pp. xxxvi–xxxvii, and lix, n. 
85; for al-Kind•’s text see Rashed, 1997, pp. 424–427.

10. The relevant text is quoted in Ibn al-Haytham, 1971, pp. 74–77. See also Ibn al-
Haytham, 1989, vol. II, Intro., pp. xxxiv–xxxvii.

11. Ibn al-Haytham, 1989, vol. II, Intro., pp. lxix–lxx, n. 110, and p. lxxi, n. 112.

12. Incidentally, this is a fact to be borne in mind when considering the role of optics 
in Arabic astronomical investigation up to the time when Ibn al-Haytham’s Optics 
became generally known to astronomers, that is, after the composition of Kamål al-
D•n al-Fåris•’s “Commentary” on it at the end of the 13th century.—On the astronomer 
Mu<ayyad al-D•n al->Ur∂•’s knowledge of the Optics see Sabra, 1998/99, p. 307, n. 24. 

13. Ibn al-Haytham, 1989, II, Intro., pp. lix–lx; Rashed, 1993; Sabra, 1994c.

14. IAU/Müller, 1882, II, pp. 93–94.

15. Hogendijk, 1985, pp. 62–63.

16. For the latter topic see Sabra, 1998, pp. 27–30, and references cited there.

17. IAU/Müller, 1882, II, p. 87 (no. 20), and p. 98 (no. 27); Ibn al-Haytham, 1989, vol. 
II, Intro., p. xxxiii.

18. Ibn al-Haytham, 1989: Optics, I, 1[2]; vol. II, pp. 4–7.

19. For the Arabic translation of synaugeia in Plato’s account see Daiber, 1980, pp. 
202, 550, 590. I suspect that ishtiråk in the sense of Plato’s term is what underlies com-
municant in Ptolemy’s Optica, in the Latin translator’s Preface, para. [2]—see Lejeune, 
1989, p. 5, and facing translation. For translating this verb in the same paragraph, 
Lejeune has “s’associent”; Smith, 1996, has “interact.”

20. The reader should note that the Preface and the two following chapters of Book I 
are missing from the Latin version.
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21. See Ibn al-Haytham’s Qawl f• al-Îaw< (“Discourse on Light”) in Raså<il, pp. 17–
18.

22. Optics, IV, MS Fatih 3215, fols 62bff.

23. Sabra, 1981, pp. 72–78, 93–98.

24. At the end of his interesting mechanical discussion (in Book IV) of the reflection of 
vertical free and forced motion, Ibn al-Haytham says that “this not being the place for 
a thorough discussion of this matter, it will be enough to make do with what we have 
determined regarding the examination of the motion of reflection” (Fatih MS 3215, fol. 
70b).

25. Aristotle, De anima II.12: 424a15. A detailed account of what might be described 
as the most developed “image-oriented” theory of vision up to the time of Ibn al-
Haytham can be found in Book III (al-maqåla al-thålitha) of the De anima com-
posed by his contemporary Avicenna—see Avicenna/Rahman, 1960; Avicenna/Van 
Riet, 1972. The theory is basically Aristotelian, but it combines Aristotle’s view of vi-
sion as the reception of visible forms in the organ of sight with physiological and pneu-
matic doctrines transmitted through Galen’s works: The “form” of an object is “con-
veyed” by an actually transparent medium (illuminated air) to the eye where it makes 
an impression on the crystalline humor. But this is not perception yet. Visual “percep-
tion” takes place only when the two forms in the two crystallines reach the front of 
the brain, after their uniting together in the optic chiasma where the optic nerves cross 
each other before diverging again. Only in the front ventricle (farågh) of the brain, 
which is filled by the pneuma that carries “the power of common sense,” will the form 
finally make the effective impression received by the common sense itself, and vision 
will be completed.—Avicenna refers to the proponents of this theory as “the upholders 
of the doctrine of simulacra”/aß˙åb al-ashbå˙ /auctores sententiae de simulacris–
apparently using shaba˙ in this context interchangeably with ß¥ra/eidos. (The Medieval 
Latin translation alternates between simulacrum and forma, but also uses other terms 
including imago—see Lexique Arabo-Latin in Van Riet’s edition.) Avicenna repeatedly 
contrasts this doctrine with that of aß˙åb al-shu>å>/auctores sententiae de radiis, namely 
the doctrine favored by the mathematicians, which he rejects. But rather than suggest 
any possible way of reconciling these two positions, Avicenna seems consistently to 
present them as mutually exclusive. And there is no hint of concern for a mechanism by 
means of which the form is “conveyed” to the crystalline or from the crystalline to the 
brain.—There is as yet no satisfactory modern translation of Avicenna’s rich discussion; 
see however the section devoted to Avicenna in Lindberg, 1976, pp. 43–52.   

26. See also Ibn al-Haytham, 1989, vol. II, pp. 53–54; and Galen/May, 1968, pp. 463–
464, where Galen asserts as a matter of empirical truth “that the crystalline humor is 
the principal instrument of vision, a fact clearly proved by what physicians call cata-
racts, which lie between the crystalline humor and the cornea and interfere with vision 
until they are couched.” See also the Index in May’s edition for related statements on 
the crystalline. Ibn al-Haytham does not mention Galen (or any other medical author-
ity) by name, but after describing the experiments which we find reported throughout 
the medical tradition up to his time and later, remarks: “All this is attested by the art of 
medicine” Optics, I, 6[14].  
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27. Optics, I, 6[65]=Risner 15:7-9; I, 6[90]=Risner 17:1-4; II, 2[11]=Risner 26:1-9; 
Sabra, 1978, pp. 165–166.

28. There are reasons (which cannot be discussed here for lack of space) that lead me 
to conclude that the passage in question must represent a later development of Ibn 
al-Haytham’s thought, that is, an expansion of his theory made necessary in light of 
compelling experiments the force of which he either was not aware of or had not fully 
realized when he first conceived the arguments expounded in Book I.

29. MS Fatih 3216, fols. 102b-103b=Risner 269:26–46.

30. Ibid., fols 103b–106a=Risner 269:46–270:29.

31. Ibid., fol. 106b:8–9=Risner 270:39–40; emphasis added.

32. Ibid., fol. 106b=Risner 270:37.

33. Ibid., fols. 101a:2–102a:1=Köprülü MS 952, fol. 73a:17-31=Risner 268:61–269:
16.

34. Lejeune, 1957, pp. 167ff.

35. MS Fatih 3216, fol. 102b=Risner 279:24.

36. I may briefly mention here two modern comments on Ibn al-Haytham’s treatment 
of refraction in the eye. The first is by Muß†afå NaΩ•f, who gives a lucid account of the 
experiments in Optics VII.6, points out the serious departure from the theory expounded 
in Book I, notes how close Ibn al-Haytham came in the final account to the breakthrough 
which we associate with Kepler, and (in connection with this last observation) ends with 
the counterfactual: had Ibn al-Haytham proposed that “the image” (khayål) of the visi-
ble point was located at the intersection of the perpendicular with the refracted ray itself 
inside the eye (rather than with its prolongation outside the eye), he would have placed 
himself “centuries” ahead of his own time (NaΩ•f, 1942, pp. 233–239).—True, but the 
fact that he did not is itself interesting and historically significant.

The second comment is by David Lindberg. He too points out the discrepancy 
between Books I and VII, and the impossibility (in some cases) of intersection between 
the perpendicular and the prolongation of the refracted ray (Lindberg, 1976, pp. 76–
78).—But, as indicated above, such an intersection was not intended. Both comments 
seem to me to underestimate the effect of Ibn al-Haytham’s initial suppositions and the 
implications of his precipitous though understandable appeal to psychology (see Sec-
tion IV below). 

My own analysis above is meant to answer two questions: one is about what drove 
Ibn al-Haytham in the direction he actually took, and the other concerns the nature of 
the problem he handed down to his successors. I would however agree with Lindberg’s 
remark  that “Kepler’s principal innovations were a response to precisely this problem of 
nonperpendicular rays [i.e., those that must be refracted within the eye] and the neces-
sity of establishing a one-to-one correspondence [between points on the object seen and 
points on the image]” (p. 78).

37. Galen/De Lacy, 1980, vii.5: 32–40, emphasis added. On the ninth-century Ara-
bic translations of Galen’s De placitis and of parts of his On Demonstration, see 



A. I. Sabra 114 Ibn al-Haytham’s Revolutionary Project in Optics 115

Bergsträsser, 1925, Óunayn’s Arabic text and German translation, pp. 26–27/21–22 and 
47–48/38–39; Sezgin, GAS, III, pp. 105–106, no. 37; see Ptol. Opt., II, [22, 23, 26].

38. See also Ibn al-Haytham, 1989, vol II, Commentary, p. 56, and Optics, II, 2[14–
15]=Risner 26:39ff.

39. Ibn al-Haytham, 1989, vol. II, Commentary, pp. 73–74; Sabra, 1989.
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III

Mathematics: Philosophy and Practice





The Andalusian jurist, philosopher, and scientist Ibn Rushd, the great Averroes 
who died eight hundred years ago in Marrakesh, put his life’s work in the ser-
vice of one project, perceived dimly in his youth, defined ever more clearly in 
the course of a prolonged struggle with the epistemic paradigm of the religious 
community, and brought to fruition in his years of maturity in a series of Long 
Commentaries on five principal works of Aristotle: establishing demonstrative 
science, the law of reason, as the basis of thought and action in human society.

An ever increasing sense of urgency is pervading all of his approaches 
to this task, seen as an ultimate duty. The recurring prayer for a last delay that 
God should grant him to achieve his goal accompanies his praise of Aristotle as 
a guide and guarantor. It is a goal most difficult to attain where the principles 
of “natural philosophy” (al->ilm al-†ab•>•) were at variance with the observa-
tions described and calculated, precisely and predictably, by the mathematical 
professions. In his Commentarium Magnum on Aristotle’s De Caelo, the solu-
tion of some remaining doubts is referred to the discussion of Metaphysics: 
“Perhaps, if we shall see the last of our term in life, we may explain this point 
when devoting a literal commentary to Aristotle’s discourse on this science 
[i.e., Metaphysics]; indeed, this is one of my highest hopes, and perhaps God, 
in his grace and compassion, will help us to live and see this time and to attain 
this goal—He is beneficent and generous.”1 But when he finally achieved his 
Great Commentary on “this science,” that is, the Metaphysics or First Philoso-
phy of Aristotle, toward the end of his life, he despaired of his task: the task 
he had set himself to explain and justify an astronomy true to the principles of 
Aristotle’s cosmology: a valid model for calculation as well as a true represen-
tation of reality:

“We must examine this ancient astronomy from the beginning. It is the true 
astronomical scheme which is valid in accordance with the natural principles 
[al-hay<atu l-qad•matu llat• taßi˙˙u >alå l-uß¥li l-†ab•>iyya]. That is, according to 
my conviction, an astronomy based on [the assumption of] the movement of one 
and the same sphere around one and the same center, revolving on two different 
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poles and more according to what is fitting the appearances. Indeed, motions 
like these can make a star go faster and slower, forward and backward, and have 
all the motions for which Ptolemy was unable to find a model (an yaßna>a lahå 
l-hay<ata). . . . In my youth, I hoped to make a complete study of this, but now 
that I have grown old, I have given up this idea because of the obstacles I found 
in my way before. But this explanation will perhaps induce somebody to study 
these things later. In our time, astronomy is not about something real (laysa 
minhu shay<un mawj¥dun); the [model of the] sphere existing in our time is a 
model conforming to calculation, not to reality (muwåfiqatun li-l-˙usbåni lå li-
l-wuj¥di).”2

This brings us to the heart of the matter at hand: The relation of philoso-
phy and mathematics, and the relation of both to reality. In the final analysis, 
this concerns the question of what the true and first reality is: the ultimate 
object of study for the philosopher-scientist.

Knowledge is power. In assuming the prerogative of definition, philoso-
phers and scientists, using different paradigms of concept and method, com-
peted for authority. This authority is based on the belief that true understanding 
of the being, order and movement of the world will warrant proper action, 
and will constitute the ultimate good and the felicity of man. This conviction 
inspired the philosophy of science from Antiquity until the early modern age: 
from Plato’s Academy—mhdeivı ajgewmevtrhtoı eijsivtw3—until Kepler, who 
illumined the first book of his Harmonice Mundi libri V4 with a quotation, 
in Greek, from Proclus’ Commentary on Euclid’s Elements: “Mathematics 
makes contributions of the very greatest value to physical science. It reveals 
the orderliness of the ratios according to which the universe is constructed, and 
the proportion that binds together all that is in the cosmos.”5

1  The Philosophical Tradition in Greek Science

Philosophy as a transmitted text and as a system of instruction entered Arabic-
Islamic society in the baggage of specific social and professional groups: of 
scientists and physicians.

It is true that premodern societies did not know the narrow professional-
ism typical of the modern division of labor. It is nevertheless true that since 
early Hellenism, philosophy itself competed with the individual sciences for 
recognition of a professional status in society, and sought to found its claim 
on the unconditioned knowledge (ejpisthvmh ajnupovqetoı) of the principles.6 

On the one hand, the philosophical schools assumed competence, and took 
charge of education, in the mathematical sciences. The conception of philoso-
phy in Aristotle and the old Peripatetic school had embraced, ideally at least, 
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the applied sciences—these in turn being regarded as elements of a paideia in 
the sense of propaedeutics to philosophy: a stage in philosophical education 
leading the way to the advanced level of dialectic, the “science of sciences.”7 

Neither in the Hellenistic nor in the Roman period, on the other hand, did 
mathematical studies form part of a general education. Outside the enkyklios 
paideia,8 the “comprehensive education” of philosophy, such studies were 
linked up with, and restricted to, the professional training of engineers, archi-
tects, geometers, and musicians.9 But here, even in the individual and practical 
sciences, the teaching of the leading authorities and their basic texts maintained 
the intimate connection between applied mathematics and its epistemological 
and metaphysical background. Beyond the decline of the philosophical schools 
in the civilization of late Hellenism, the philosophical doctrine of the principles 
and of the cosmos survived in the gnostic Platonism of the natural sciences, 
in the Neoplatonism of the mathematicians, in the Peripatetic cosmology of 
Ptolemy, as also—but this is a matter different and apart—in the elementary 
logic reading of the Christian schola (usk¥l).10 This is how Greek philosophy 
entered the urban and courtly society of Islam: as methodology and ideology 
of the professional sciences, notably of mathematics and astronomy on the one 
hand, of medicine on the other. It is a philosophy neither pagan nor Christian 
nor Islamic, but universal: a rational religion of the intellectuals of Greek eru-
dition, giving an ulterior sense to their activity.

Each scientific tradition carried its own philosophical discourse: a choice 
of authorities, a methodology, a classification and hierarchy of the sciences, 
and a general orientation of cosmology and ethics. With the physicians we find 
Galen’s platonism as also Galen’s own logic, anthropology and ethics, com-
peting with philosophy in pretending to teach an ars vitae. (In consequence, 
the philosophic or non-philosophic character of medicine, being technê or 
epistêmê, was under dispute in apology and polemic from both sides.) The 
mathematician and astronomer, and the professional astrologer or geometer, 
pretended to a universal competence no less than the physician, but on a dif-
ferent scale: on the authority of a time-honored tradition, and of an eminent 
ancestry, in the history of philosophy itself. The mathematicians were Pla-
tonists and Pythagoreans in the tradition of Nicomachus, Proclus and Iambli-
chus. But the astronomers cherished the Aristotelian propaedeutic and, above 
all, the Aristotelian cosmology conjoined with the authority of Ptolemy. Hence 
it was Aristotle who came to dominate the system of the physical world, and it 
was a Peripatetic structure which, since being adopted by Ptolemy, prevailed 
in the method and epistemology of professional science. 11
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The World Is Number: The Platonic Heritage

The philosophy of mathematics owes to Pythagoras two significant contribu-
tions, perennial legacies to the history of thought: firstly, of the attitude and 
the word of philosophos, and secondly, of the concept of mathêmata as being 
everything that can be precisely known and learned. Even Aristotle will use 
mathêmata in this basic sense, and there is a long way leading from those 
essentials of knowledge to what is being learned as mathematics in today’s 
schools. But although the mathêmata of Pythagoras were different in subject, 
method, and the state of conscious approach from the mathematical discipline 
of the later schools, mathematical principles in the proper sense of number12 

and of mathematical harmony were from the beginning regarded as the very 
center of Pythagorean thought. Everything knowable has number.13 If we may 
trust Aristotle, the Pythagoreans held that numbers have an essential likeness 
with things of the world, sometimes that things are numbers, and that number 
is “the essence of all.”14 This is, of course, refuted by Aristotle, being assimi-
lated to Plato’s doctrine of eternal Ideas.15 Through Plato, the mathematical 
disciplines of the Pythagorean canon were introduced as forming the basis of 
intellectual education. It was the program of the Academy: arithmetic, geome-
try, astronomy, harmony, and dialectic. This canon is presupposed as a matter 
of course by Aristotle in the opening of the Posterior Analytics. But it was Aris-
totle who, in the second book of the Analytica posteriora, extended the mathê-
mata to include the universe of knowledge, leaving behind the more narrowly 
mathematical paradigm of the Academy and of its Pythagorean model.16

The programme of the Academy is expounded by Plato as a programme of 
educating the Guardians of the Republic (Resp. VII, 526ff.): The subjects to be 
taught are arithmetic, geometry (to which is added stereometry as a special sub-
ject), astronomy, and music (i.e., the science of harmonical proportions); these 
are the only disciplines recognized as sciences in the proper sense, yielding a 
priori knowledge of immutable and eternal reality. They are described in Resp. 
book VII with respect to their power of turning the soul’s eye from the material 
world to objects of pure thought. First comes arithmetic, the science of number, 
the numbers—ideal units—of mathematics being considered “by thought,” in 
the abstract, only;17 hence “this study is really indispensable for our purpose, 
since it forces the mind to arrive at pure truth by the exercise of pure thought.”18 
Geometry, coming second, is equally “knowledge of the eternally existent,” and 
“will tend to draw the soul toward truth and to direct upwards the philosophic 
intelligence.”19

The rise of arithmology on the one hand, and of musical theory on the 
other, in later Platonism and Neoplatonism is closely connected with the re-
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emergence of Pythagoreanism, the mathematical offshoot, as it were, of Middle 
Platonism.20 And as Plato had built upon Pythagoras, Neoplatonism relied on 
Neopythagoreanism. Not the metaphysics of the One and Intellect of Plotinus, 
but the gnostic and occult tendencies of the later Neoplatonists drew on this 
source, leaning toward asceticism, supported by magical practice, contriving 
the perfection of the soul in view of its ultimate ascent to the world above. 
The central philosophic message of Pythagoreanism, echoed and supported 
by many a statement of Plato as well, made it a religion of mathematicians: 
The world is number; through mathematicals, the transcendental and the 
divine can be perceived. As mathematicians, some of the leading figures of the 
Pythagorean school, such as Apollonius of Tyana, were foremost in their age. 
The “Introduction to Arithmetic” of Nicomachus of Gerasa (first century C.E.), 
on the other hand, is the work of a philosopher rather than a mathematician, 
intended as a guide to the late works of Plato and to the Pythagorean treatises, 
first read by philosophers rather than mathematicians, and still popular at a 
time when there were no mathematicians left, but only philosophers who inci-
dentally took an interest in arithmology.21

As a true Pythagorean, Nicomachus makes arithmetic—the science of number—
the primary object of philosophy, the name of philosophia being ascribed to 
Pythagoras (as was common in the school). This “wisdom,” sophia, is defined as 
knowledge of the truth in “real things,” things immaterial, unchanging and eter-
nal, among which the subject of arithmetic is foremost, because “it existed before 
all the others in the mind of the creating God like some universal and exemplary 
plan” (Introd. arithm., IV.2).22

Iamblichus, the 4th century disciple of Porphyry, follower of Plotinus, 
put forward a program to pythagoreanize Platonic philosophy. As philosophers, 
the followers of Pythagoras made mathematics, starting with arithmetic, not 
only the leading propaedeutic art, but also the foremost object of philosophical 
study in its own right. “One significant result of this is the mathematization of 
all areas of philosophy that is so striking a feature of later Greek philosophy.”23 
In the writings of Proclus, again, Plato supplants Pythagoras as the central 
authority, and while accepting the pivotal role played by mathematics in the 
philosophical sciences, Proclus chooses geometry rather than arithmetic as the 
pre-eminently mediatory mathematical science (as is evident from his com-
mentary on Euclid’s Elements). Mathematicals are projections by the soul of 
innate intelligible principles; and it is particularly in geometry, according to 
Proclus’ teacher Syrianus, that the soul projects such innate principles into 
imagination because in its weakness soul is better able to grasp these principles 
in the extended forms given in the figures of geometry.24
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The Transmission of Philosophy through Science

While the principal works of these authors may not have been available to 
the first generation of Arabic scientists, as al-Kind• and his contemporaries, 
the general attitude to the mathematical sciences clearly goes back to such 
authorities, transmitted through the basic manuals and their commentators and 
translators. Even for astronomy, where the Peripatetic doctrine and attitude 
determined the method and many of the basic cosmological assumptions, 
Plato had sanctioned the pursuit of mathematics as a philosophical assign-
ment. Going beyond the mere calculus of an auxiliary model, mathematics 
established the sympathetic rapport between the higher and lower worlds, man 
and the universe. The designation as philosophos of the savant who in his spe-
cial field of application evinced this quality, underlined this self-image. Hence 
the Platonic concept and rôle of the mathematica prevails in the system of the 
mathematical sciences and in the tradition of number theory and of the doctrine 
of musical harmony.

But long since, philosophy and the sciences had drifted apart with regard 
to their social status and their rôle in education and intellectual life; philosophy 
had ceased to pretend to the status of a profession. Even before the decline 
of pagan Hellenism, philosophy had lost the remarkable role it had played in 
education and intellectual life as against the applied sciences; it had also lost its 
social status—philosophy remaining but small fare in the provisions of profes-
sional physicians and astrologists. The last Alexandrian commentators earned 
their living not as professors of philosophy, but—as indicated by explicit hints 
and by the implicit evidence of their metaphors and their examples given to 
illustrate a point—as doctors, grammarians, rhetoricians, and astrologers.25 

Instead of the philosopher of universal competence, the authority of definition 
among the intellectual élite is assumed by the “philosopher” (in Arabic, ˙ak•m) 
specialist of the applied arts.

Apart from particular professional features, regional traditions persisted 
locally from pre-Islamic time before uniting in Baghdad: On the side of the 
Nestorians working in Sasanid Iran, we find Åbå of Kashgar (c. 600), familiar 
with astronomical as well as medical sources; on the side of the Monophysites 
of upper Mesopotamia, Sergius of Resh>ayna translated not only Galen, and 
books on astrology, but also works of the Christian Neoplatonist known under 
the name of Dionysius Areopagita, and the translations from the Persian, made 
by Severus Sebokt of Qinnasrin, provided a remarkable range of astronomical 
and mathematical works.26 Most important for our subject is the tradition of 
the philosopher-scientists from Óarrån, the ancient Carrhae, where worship 
of the heathen star-gods survived until the tenth century: the Íåbi<a, claiming 
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the protection due to the ahl al-kitåb and rising to high stations in the Abbasid 
administration. Even though the activity of Thåbit ibn Qurra and his descen-
dants, both as translators and as original mathematicians, does not suffice to 
attribute to these “Sabian” sources every text of Plato and every Neoplatonic 
or gnostic interpretation of Aristotle leaving traces in the Arabic tradition,27 the 
Platonic-Neoplatonic heritage of the mathematicians from Óarrån may go a 
long way to explain the knowledge of Plato, and the influence of Platonism, in 
the philosophical orientation of early Arabic science. But far beyond this spe-
cific transmission of mathematical science, the arithmology of neo-Pythago-
rean origin pervaded the multiple strands of the popular and practical traditions 
of Hellenism, from the occult sciences to gnomological wisdom literature; the 
final triumph of Peripatetic falsafa as a school of demonstrative science is due 
to its reception and adaptation in a new milieu.

Al-Kindi and the Platonic Tradition

The translations which were commissioned by one of the leading philosopher-
scientists of the early ninth century, and influenced his own writings, cover 
a wide range: Ab¥ Y¥suf Ya>q¥b ibn Is˙åq al-Kind•, astronomer, astrologer, 
versed in mathematics and optics, medicine and pharmacy, a polymath of 
his age—the age of the caliph al-Ma<m¥n (813–833) and his sons and suc-
cessors—who died in or shortly after 866. Taken altogether, the works of al-
Kind•, and the sources made available through his efforts, and translated on his 
demand, are the most impressive witness to the triumph of Hellenism after an 
earlier period where the import of Iranian traditions had been prominent both 
in the political and religious community and in the reception of science. But 
the different strands, professional and doctrinal, are yet unconnected, even in 
conflict, different in style and approach, in his vast œuvre.

Al-Kind•’s Plato, where he is named, stands for the Platonism of the 
gnostic, “Hermetic” subculture of popular Hellenism, a religion for intel-
lectuals like the one upheld by the Sabians, of mathematicians and astrolo-
gers. An exposé of Neoplatonism, transmitted on al-Kind•’s authority by Ibn 
al-Nad•m,28 is put forward as a doxography of the Íåbi>a. It is true that more 
of Plato’s authentic works were available in al-Kind•’s generation than were 
preserved beyond the next century (mainly through the philosophical tradition 
of medical authors—the tradition of Galen the Platonist). Among the Platonic 
dialogues available was the Meno, the first exposition of the doctrine of recol-
lection (anamnesis). But al-Kind•’s own treatise on “What the soul remembers 
of what it had in the world of the intellect,” while invoking the Platonic con-
cept, is based on the Neoplatonic tradition of the Arabic Plotinus source and 
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related texts.29 What is stressed most forcibly here is the existence and nature 
of a priori knowledge: a knowledge of the eternal principles, but brought 
forth (tukhrijuhå) in the individual soul—after its exposure to the secondary 
intelligibles, the forms-in-matter of the material world—by the autonomous 
activity of reason only. Not everybody is qualified to attain, to re-collect, this 
knowledge in its primordial splendor. By stressing the incorporeal substance 
of the intelligibles and of the rational soul, al-Kind• drives home the ultimate 
value of his science: Only he who purifies his soul will gain true happiness and 
the ultimate vision of truth.

Our main testimony for the Arabic Meno is found in the work of a mathemati-
cian: Thåbit ibn Qurra’s Epistle “On the argument ascribed to Socrates on the 
rectangle and its diameter.”30 This is the well-known problem used in the Meno 
in order to demonstrate how even a mind not trained in mathematics can be 
guided toward mathematical insight, because the human mind can be made to 
“remember” what it obtained in its preexistence while viewing the ideas in the 
world above. But the mathematician Thåbit does not touch on anamnesis, clos-
ing his mathematical analysis with a very general remark on the goal and value 
of mathematical science. Some of these matters, he says, are more elevated than 
others; whosoever confines himself to the basic matters of geometry, does this 
either from incompetence, “like some people in our era,” or because he wants 
to guide learners through gradual stages according to their capacity. This latter 
was the intention of Socrates, using this problem as a paradigm of his intention, 
for “mathematics (ta>ål•m, maqhvmata) is for the soul what nourishment is for the 
body—as one of the Ancients said.”31

The Platonism of Proclus (who had written a long commentary on book 
I of Euclid’s Elements),32 and the Pythagorean attitude of Nicomachus of 
Gerasa and of the Hellenistic theory of music are obvious in al-Kind•’s extant 
works and in the titles of some which have been lost. As a mathematician, al-
Kind• was familiar with the tradition of Iamblichus’ treatise “On the Common 
Mathematical Science,” which presented mathematics as the absolute object 
of contemplation; he knew the Neoplatonic reading of Euclid’s Elements, 
and he reworked for his own use the Neoplatonic philosophers’ vademecum 
of number theory, the Introduction to Arithmetic by Nicomachus of Gerasa, 
available in a contemporary Arabic version.33 Also available was Nicomachus’ 
“Great Book on Music,”34 and hence, the interest in the actualisation of perfect 
mathematical relations in musical harmony can be followed up in this same 
school of thought.

But this is only one side of al-Kind•’s philosophical program. On the other 
hand, he was an heir to, and a conscious continuator of the Academic tradition 
surviving at the hands of commentators with a Neoplatonic orientation, notably 
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in the school of Alexandria and its Byzantine offshoots. Both sides compete in 
this early period of translation and adaptation, at times in a striking contrast 
of style. Al-Kind•’s Aristotle is not yet the master of logic and of demonstra-
tive science, styled the First Teacher by al-Fåråb•’s school in the next century, 
emancipating philosophy from the applied arts, relegating Plato to an inferior 
rank restricted to sharing out practical, political wisdom. But already, Aristotle 
had taken on the rôle of super-philosopher, the “foremost” (mubarriz) of the 
Ancients who, in al-Kind•’s words, “for luminous, harmonious souls will lead 
the way toward the highest spiritual rank.”35 al-Kind•’s Aristotle, albeit Platonic 
in matters of theology and cosmology, is representing the encyclopaedia of the 
rational sciences; he is the undisputed authority on the physical world.

The system of philosophical (including mathematical) studies is modelled 
on the Alexandrian curriculum, well-known through the Neoplatonic commen-
tators of Aristotle from the school of Ammonius; and the victory of Hellenism 
over the Iranian tradition in astronomy and astrology prepared the way for Aris-
totle to become the First Teacher of Arabic Islamic philosophy. This is evident 
in the work of al-Kind•’s rival, the astrologer Ab¥ Ma>shar (m. 272/886)—his 
Great Introduction to astrology is the first full-grown handbook to be written in 
Arabic for any of the ancient sciences—as well as al-Kind•’s own.36

The result of al-Kind•’s reading is, in more than one respect, a compro-
mise between the obvious contradictions apparent in the Corpus Aristotelicum 
itself, between the “Platonic” and the “Peripatetic” Aristotle, and between the 
tendencies of the Greek commentators. The synthesis arrived at in al-Kind•’s 
division of the sciences is a case in point, and reflecting a long discussion. The 
Platonic tripartition of the sciences and of being had been kept by Aristotle 
in his division of the sciences into physical, mathematical and theological 
(Metaph. K 7, 1064b1), but was in conflict with the ontology of the later Aris-
totle who—in the final analysis—denied the subsistence of the mathematical 
entities as well as of soul. In the further attempts of the Academy to reconcile 
these positions, from Speusippus to Proclus, soul was coordinated ontologi-
cally with the mathematicals.37

In his introduction to the study of Aristotle,38 al-Kind• gives the first 
place to mathematics (al-riyå∂iyyåt) as a preparation to the study of philoso-
phy proper (plausible in the context—there were scarcely any mathematical 
writings ascribed to Aristotle39—and in accordance with the information given 
by some of the commentators, referring to the Platonic curriculum).40 al-Kind• 
wrote a treatise confirming this attitude, “That philosophy can be acquired 
through the science of mathematics only.’’41 In the following classification 
of Aristotelian philosophy, we do not find mathematics as an “intermediate 
science” ranged between physics (on the motion of sensible substances) and 
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metaphysics (on intelligible being), but psychology: an intermediate discipline 
concerning objects which are independent of bodily substance, subsistent, but 
perceived by the senses in conjunction with bodies. These are the topics of 
psychology, in one instance.—But, in another context, the topic of this “inter-
mediate science” is mathematics. The quadrivium of mathematics is interme-
diate between the natural sciences on the lower end, and—following the way 
from the multiplicity of sensual phenomena to the universal simplicity of the 
principles through abstraction—metaphysics and theology. The soul belongs to 
the same intermediate realm “in between”: the soul as subject, and the math-
ematicals as object, belong both to the world of the eternal intelligibles and the 
corruptible sensibles. This realm “in between,” to metaxy, is the realm of the 
recollection in the soul of its prenatal view of the universals. Logic, the fourth 
and propaedeutical discipline beside the former three, is being treated as part 
of the catalogue, but the final apotheosis of the science of demonstration, based 
on the Analytica Posteriora, was achieved by the Arab logicians of the tenth 
century. Al-Kind•’s starting point for the study of philosophy, as in the Platonic 
Academy, is mathematics.

Al-Kind•’s double esteem of mathematics as a propaedeutic to philoso-
phy, and as a subject worthy of philosophical study in itself, unfolds in great 
detail, and in the best rhetorical tradition of the Platonic mathematicians, in 
his treatise “On the string instruments producing sound” (K. al-Mußawwitåt 
al-watariyya). Introducing musik∑ as a discipline of mathematics, he expounds 
the position of the mathematical sciences as intermediate between physics and 
metaphysics:42

“It is a custom with the philosophers to practice the middle science, ranged 
between a science beneath it and a science above it. The one beneath is the sci-
ence of nature and what is moulded from nature; the one above is called the sci-
ence of what is not of nature, albeit its impact is observed in nature. This interme-
diate science, which leads the way both to the science of what is above and what 
is below it, is divided into four sections: viz. the sciences of arithmetic, musical 
harmony (>ilm al-ta<l•f wa-huwa l-m¥s•q•), geometry, and astronomy”—

in this order, music being given the second place before the other disciplines 
according to the “Pythagorean” system of Nicomachus.43

After providing some remarks on the precedence of knowledge (>ilm) 
over action (>amal), al-Kind• goes on to expound the philosophers’ teaching of 
mathematics in general as a theoretical basis of rational practice:

“So it was a habit with the philosophers to present the secrets of the science of 
nature and its manifestations in many of the subjects they treated in books, as in 
those on arithmetic and the amicable and hostile numbers, on the proportional 
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lines, and on the five polyhedra (mujassamåt ‘bodies’) fitting into the sphere. 
After demonstrating that there is no sensible thing the matter of which is not 
constituted from the four elements and the fifth nature, viz. fire, air, water, earth, 
and the sphere, their acumen, intelligence and reflection guided them to establish 
the stringed instruments of sound, and thus to mediate between the soul on the 
one hand, and the composition of the elements and the fifth nature on the other, by 
means of such instruments. They designed many stringed instruments in accor-
dance with the composition of the animal bodies, and brought forth from them the 
sounds corresponding to the human composition, demonstrating thereby to intel-
ligent minds how noble and excellent this wisdom (˙ikma, philosophy) is.”44

The skilled philosopher-musician will be able to adapt his music to any 
given situation, creating harmony between the soul and the universe, like the 
physician diagnosing the humors of his patient and prescribing a treatment 
inducing the equilibrium of health.45 The musical instruments, and the string 
instruments in particular, are constructed so as to present the cosmic structure 
of the physical and intelligible world. Al-Kind• describes the ethnic and his-
torical varieties of the lute as models of the universe, allocating the number of 
strings in each case to ontological classes. The four strings of the Greek, as also 
the earlier Arab lute, are of course in correspondence with the familiar series of 
cosmic tetrads, the elements, the senses, and the humors, and many others, not 
forgetting the four cardinal virtues, and the four primary questions put forward 
by Aristotle in his introduction to the Analytica Posteriora.46 The five-stringed 
lute, more familiar from the later period of Arab musical practice, receives a 
similar treatment.47 In an analogous procedure, the particular characteristics 
of the four individual strings are associated with the elements, the humors, 
ecliptic arcs, sections of the zodiac, faculties of the soul and other aspects of 
physiology and astronomy, the macrocosm and the microcosm—associations 
which are used to explain the specific reactions and affections evoked by the 
sound of each.48

A different use, but going back to the same tradition of Neopythagorean arith-
metic, is made of mathematical proportions in the composition of drugs. Since 
al-Kind•’s Kitåb f• Ma>rifat quwå l-adwiya al-murakkaba49 and its critique by 
Ibn Rushd is being discussed by Tzvi Langermann (in another contribution to 
this volume),50 I will dispose of it briefly. What al-Kind• does is to apply Galen’s 
doctrine of the “grades” of action in the simple drugs to the compound drugs, 
and he extends the Galenic model by calculating the effects of the compounds on 
the basis of geometric proportions and progressions. The arithmology underly-
ing this speculation can be traced back, again, to the Arithmetic of Nicomachus 
of Gerasa, and it is the continuing influence, in twelfth-century Andalusia, of a 
theory based on “the art of number and the art of music” which exasperates Ibn 
Rushd and drives him to a torrent of abuse.51
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The Gnostic Tradition and Mathematics

It is in these various domains that we encounter concurrent offshoots of a 
tradition which in the work of al-Kind• found its most versatile, serious and 
influential exponent, and which lived on in his school, but gradually sank to 
the lower strata of occult practice and heretical obscurantism against the pure 
rationalism of Peripatetic philosophy.

Cognate traditions of arithmology can be traced in the philosophical 
encyclopaedia of the Ismå>•l• Ikhwån al-Íafå< on the one hand, and in the 
corpus of alchemy and the occult sciences ascribed to Jåbir ibn Óayyån on the 
other. I cannot go into the discussion of age, authenticity and unity of the Jåbir 
corpus of writings; suffice it to say that the transmission of the corpus was car-
ried on in Ismå>•l• circles, where the Kitåb Ikhwån al-Íafå< was read as well, 
but goes back—in part at least—to an earlier period of the Arabic reception of 
Hellenistic thought. It is a tradition of the philosophical and scientific “sub-
culture” of late Hellenism. Al-Kind• knew this tradition and drew upon it, but 
achieved a first, though incomplete integration with the Peripatetic paradigm. 
In the Jåbir writings, as also in the Kitåb Ikhwån al-Íafå<, this tradition was 
carried on independently, and in a different context.

For Jåbir the role of arithmology is significant. It pervades the “science 
of the balance,” >ilm al-m•zån, a central concept governing the philosophy of 
nature.52 This is meant to reduce all domains of human knowledge to a system 
of quantity and measure, conferring on these the character of an exact sci-
ence. In particular, it is Jåbir’s intention to submit nature to measure, and to 
determine the proportions of the elemental qualities or forces—the hot and the 
cold, the moist and the dry—represented in the bodies and in their interactions. 
As in al-Kind•’s treatise on the compound drugs, the Galenic physiology, and 
in particular the Galenic theory of the four degrees of intensity or potency in 
regard of the elemental qualities, determining the effects of a specific medical 
or nutritive substance, is at the basis of this theory.53 Jåbir follows closely the 
Galenic classification. At the same time, the values of the four degrees and 
their subdivisions are calculated on the basis of arithmetical progressions, 
familiar from Greek number theory as it was found in Nicomachus, and on the 
other hand, in the literature on the harmonical proportions.54 On a larger scale, 
the rapport between the musical harmony governing the celestial spheres and 
the harmony found in the physical world is investigated in the Jåbirian Kitåb 
al-Ba˙th, a philosophical justification of theurgy (the >ilm al-†ilasmåt). Here 
again, the author makes reference to Plato’s Timaeus, or rather the Platonic-
Pythagorean tradition elaborated from the cosmology of the Platonic work.55

Also based on Greek sources, and put into a systematic framework struc-
tured on the lines of the Alexandrian curriculum and system, are the Raså<il 
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Ikhwån al-Íafå<, written in second half of the 10th century.56 One remarkable 
trait which springs to the eye is the priority given to mathematics. The book 
opens with a treatise on arithmetic. The introduction, explaining falsafa, phi-
losophia, as ma˙abbat al-˙ikma, is closely dependent on the Pythagorean tra-
dition57 as transmitted through the Eisagôgê of Nicomachus,58 leading on to the 
classification of the sciences.

“The aim and scope of this Epistle is training (riyå∂a) the souls of the disciples 
of philosophy, those who ‘choose wisdom,’ and who study the real (nature of the) 
things, and search after the causes of all things; in it, there is explained that the 
form of number in the souls corresponds to the forms of the beings in matter, 
being the models from the upper world. Through their knowledge, the novice 
is led on toward the other propaedeutical [riyå∂iyyåt, i.e., mathematical] and 
physical disciplines. Indeed, the science of number is the root of the sciences, the 
essence of wisdom, the foundation of knowledge and the (principal) element of 
all things [al-ma>ån•, objects of the mind].”59

Arithmetic is followed by geometry, astronomy, and music. Apart from 
the general concept of mathematics, a number of closer parallels to al-Kind•’s 
treatment of musical harmony is found in the Epistle on Music, the fourth part 
of the quadrivium.60

The author of the Risåla is convinced (following the Pythagorean exam-
ple)61 that the science of music is the principal wisdom leading to philosophical 
thought:

“Musical harmony in its most exalted and perfect form is embodied in the heav-
enly spheres and the music that they make, and earthly harmony, including that in 
the music made by man, is only a pale reflection of that same lofty universal har-
mony. . . . Since an ordinary mortal cannot hear this music before he is cleansed 
and purified, he will aspire to be redeemed from the prison of this earthly life, to 
be prepared for the contemplation of an eternal harmony which is the most real 
and truthful.”62

The harmony that governs all celestial and earthly phenomena is 
explained by means of number. Like al-Kind•’s treatise mentioned before, the 
Epistle abounds of arithmetical speculations that spread into many and varied 
domains of cosmology, physiology and philosophy. The section on the affilia-
tion of the four strings of the lute with various cosmic and physical and physi-
ological tetrads agrees almost verbatim with the third section of al-Kind•’s 
treatise on string instruments.

The general attitude is expressed in nuce in one of the aphorisms col-
lected at the end of the Risåla, recalling the familiar analogy between soul and 
number:
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“Since the substance of the soul is of the same nature as that of harmonic 
numbers (al-a>dåd al-ta<l•fiyya) and corresponds to them, when the beats of the 
rhythms presented by the musicians are measured, when in these rhythms the 
period of beats and silences are proportionate, human nature takes delight in 
them, the spirit rejoices and the soul experiences happiness. All this is because of 
the resemblance, the relation and the kinship which exists between the soul and 
musical harmony.”63

The School of al-Kindi

The school of al-Kind• was brought to the East by Ab¥ Zayd al-Balkh• (d. 332/ 
934), who spent in his youth eight years of studies in Baghdad, better known 
through what has survived of his geographical œuvre, but also bent on a sys-
tematical treatment of the sciences (his Tart•b al->ul¥m is now lost): a man 
who combined competence in the rational sciences with a conservative piety 
praised by his contemporaries.64 In Balkh, the meeting place of trade routes 
from Central Asia, Transoxania and Iran, the tradition of the Faylas¥f al->Arab  
was passed on to Abu ’l-Óasan al->Åmir• who spent some time in Baghdad and 
at the Buyid court in Rayy before he returned to Nishapur (where he died in 
381/992). The most detailed attempt to determine the relation of the religious 
and the philosophic disciplines in a harmonious symmetry is al->Åmir•’s I>låm 
f• manåqib al-Islåm.65 The very title signals an apologetic program: the rational 
sciences are put into the service of Islam, the absolute religion, and of the reli-
gious sciences. Both spheres are based on tenets which agree with pure reason 
and are supported by valid demonstration.

Here again, we find al-Kind•’s attitude toward the mathematical sciences: 
the “science of number” (>ilm al->adad) will “immerse the mind into the intel-
lectual pleasures;”66 and the science of harmony (ßinå>at al-ta<l•f) will give 
demonstrations of the harmonious relations, measures and forces in the ter-
restrial and celestial world, and beyond this, in the corporeal and the spiritual 
world (al->ålam al-r¥˙ån•) in general; without this, the astronomers were not 
able to verify the states of the celestial bodies. Astronomy, in its turn, will alert 
the mind to the “doors of felicity.”67 The ethical component of this ˙ikma, the 
autonomous ethics of the philosopher who finds in the encyclopaedia of sci-
ences the instruction for educating his soul toward purity and ultimate bliss, is 
found again in the Tahdh•b al-akhlåq of Ab¥ >Al• Miskawayh (m. 421/1030). 
It was al-Kind•’s concept of philosophy as an autonomous way of thought and 
way of life—albeit in the service of the Muslim community and compatible 
with the Koranic revelation—which stayed alive in the circles of the ˙ukamå<: 
of scientists, of learned courtiers, and of physicians who in the spirit of Galen’s 
platonism revered in philosophy the healing art of the soul. It was the concept 
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integrated by Ibn S•nå with al-Fåråb•’s concept of philosophy as demonstrative 
science: a universal encyclopedia which in the ranks of scientists and physi-
cians, but also, and increasingly, among the élite of Muslim administration, 
found an eager readership.

2  Aristotle and the Universal Claim of Philosophy as 
demonstrative science

From the rise of philosophical schools in late Hellenism to their reception 
by the Christian transmitters and the Muslim heirs to this tradition, Aristo-
tle was venerated as founder of the paradigms of rational discourse, and of 
a coherent system of the world. In the course of the hellenization of Arabic 
science and philosophy, after the initial dominance of Iranian traditions in 
medicine and astrology (transmitting, it is true, their own brand of hellenism), 
Aristotle was elevated to the rank of absolute philosopher, al-˙ak•m or al-
faylas¥f.68 At the same time, Plato was shoved gradually aside into the domain 
of popular wisdom and vulgar gnosticism. Not the philosophers, but the learned 
doctors of medicine, disciples of Galen, continued to cherish the Platonism of 
Galen’s school, and the little that is extant of the texts still available to the first 
generation of translators has been preserved not by philosophers but by the dil-
ettanti of philosophy, most of them physicians. The mathematicians, and above 
all the astrologers, followers of Ptolemy, equally made Aristotle the supreme 
guide to the “science of sciences,”69 according to the traditional definition of 
philosophy.

Plato’s dialectic of ideas was replaced by Aristotle’s alternative dialectic 
of discourse: a deductive epistemology. This was first put forward in a radical 
form in the Posterior Analytics: “For we can say goodbye to the eidê, for they 
are nonny-noes, and if there are any, they are nothing to the argument.”70 Even 
here, Aristotle’s closeness to the Platonic model he is replacing, and to the 
study course of the Academy, is evident in his allusions to Platonist vocabulary 
and concepts: “All teaching and all intellectual knowledge come about from 
already existing knowledge. This is evident if we consider it in every case; for 
the mathematical sciences are acquired in this fashion, and so is each of the 
other arts.”71 With Aristotle as with Plato, mathematics is the science par excel-
lence, providing both examples and the general problematic. A passing shot at 
the Meno is making it plain, if only implicitly, that Plato’s theory of recollec-
tion (anamnesis), which explained the preexistence of mathematical universals 
through reference to eternal ideas, has been discarded. In the “aporia of the 
Meno,” the partner of Socrates, baffled in his search for virtue, asks: “And in 
what fashion, Socrates, will you seek that of which you do not even know if it 
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exists?” (Meno 80d). Aristotle follows Plato in maintaining that the seeker does 
in a sense already know what he is looking for. Having explained that the learner 
must already know the premises, Aristotle adds (An. Post. I.1.71a24f.) that in 
a sense he also knows the conclusion. But only in the end (An. Post. II.19), he 
returns to the implications of his own theory of preexisting knowledge, and pro-
ceeds to account for the acquisition of the first, lowest universals by induction 
(epagôgê). Indeed, we cannot demonstrate the principles. Aristotle’s primary 
contention is to expound the universal structure in the acquisition of knowledge 
based on what is already available to human knowledge from such principles, by 
expounding the universal system of demonstration, apodeixis.

The role of axiomatic mathematics as a background to demonstrative 
method in philosophy is evident from its very conceptualization and termino-
logy. As early as in the fifth century B.C.E., Greek mathematics had taken the 
step from simple demonstration, ajpov-deixiı, from visual evidence, to demon-
stration from principles: definitions and axioms. Like the science of geometry, 
logical demonstration had “to rely on principles, which, though unprovable, are 
nonetheless true and indisputable.”72 In this, Aristotle continued an intellectual 
tradition which recognized a fundamental affinity between mathematics and 
dialectic. Even though the mathematical and physical sciences apprehend their 
principles in a different way, Aristotle regards mathematical procedure—axi-
omatization, and the use of hypotheses—particularly helpful for the acquisi-
tion of all scientific knowledge. Mathematics provided to him a model of 
deductive-demonstrative science parting from principles (ajrcaiv).73

But his noetic concerns are not separable from ontology, and especially 
from the basic ontological aporia of relating individuals qua individuals to 
individuals as being exemplars of universals. “The newly declared oujsiva, the 
individual substance, had as individual substance become unknowable except 
in universal terms, and the abstracted essence took on the detached charac-
ter of the rejected forms of Plato.”74 For Aristotle himself, this remained the 
“greatest” aporia (Metaph. 1087a13, 999a24–25). It was here that the ways of 
late Hellenistic metaphysics, of philosophical theology, in Christianity and in 
Islam as well, parted with the master of demonstrative science: returning over 
and again to the assumption of preexisting, eternal, hypostatized objects of 
knowledge. According to Aristotle’s theory, presented as a general epistemol-
ogy, the sciences are to deduce the properties of substances from their essences 
through syllogisms. Still, in expounding the sciences in a formal axiomatized 
system, Aristotle proposed for every branch of human knowledge what early 
Greek mathematics had done for mathematicals (and what Euclid consum-
mated for geometry later on75—influencing, in his turn, an axiomatic approach 
to ontology and cosmology in Neopythagorean and Neoplatonic metaphysics). 
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In following Aristotle in this overall orientation, all subsequent philosophical 
systems, notably those of Islam, are essentially Aristotelian—whatever their 
Platonic or Neoplatonic paradigm in the allegories of the World Above.

The place accorded to mathematics has to be seen in this context.
In c. 2 of the Metaphysics, book B, Aristotle discusses the question under 

which science, or sciences, if any, the “principles of demonstration” will come, 
that is to say, the “common opinions” or axioms (axiômata), which are the 
starting-point of all demonstrations. The science of these principles cannot be 
any one of the special sciences, as e. g. geometry. In a later passage (Metaph. G. 
3, 1005a19–b1, cf. K. 1, 1059b14–21), Aristotle gives his solution concerning 
the position of mathematics:76

“We have now to consider whether it belongs to one science or to different sci-
ences to inquire into what mathematicians call axioms, and into substances. It is 
manifest that the inquiry into these axioms belongs to one science and that the 
science of the philosopher; for they hold good of all existing things, and not for 
some one genus in particular to the exclusion of others. Everyone makes use of 
them because they belong to being qua being, and each genus is (part of) being. 
. . . This is why none of those who study the special sciences tries to enunciate 
anything about them, their truth or falsehood; neither the geometer, for instance, 
nor the mathematician does so, though it is true that some of the physicists have 
made the attempt, and not unnaturally seeing that they supposed that the inquiry 
into the whole of nature and into being belonged to them alone. But since there 
is a class of inquirer above the physicist (nature being only one particular genus 
of being) it is for the thinker whose inquiry is universal and who investigates pri-
mary substance to inquire into these axioms as well. Again, since the mathema-
tician, too, uses the common axioms in a particular application, it must be the 
business of first philosophy to investigate the principles of mathematics also.”

As far as the axioms of mathematics hold of all being, they belong to 
philosophy, investigating all being so far as each of them is.

The physical part of philosophy and mathematics study the same 
objects, but there is a difference—especially with regard to optics, harmonics, 
and astronomy, which among the mathematicals are “nearest to the study of 
nature.”77 In physics, both matter and form are studied: the substances of the 
physical bodies as well as their shapes—bounded by planes, lines, and points. 
Mathematics studies these geometrical attributes only, not as attributes of 
physical bodies, but in abstraction:78 separate in virtue of cognitive abstraction, 
not—pace Plato—qua being ontologically separate.
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Al-Farabi and Demonstrative Science

By the end of the ninth century, philosophers had gained a readership which 
had spread considerably beyond the circles of the scientific professions: among 
littérateurs, among the élite of the secretarial class (the kuttåb), and in circles 
attending the courtly majålis of learned and literary exchange. These may also 
have shared the philosophers’ distrust of the infection of Kalåm by the growing 
tide of traditionist orthodoxy. But then, addressing the same readership, a dif-
ferent program was drafted by al-Fåråb• (d. 339/950): based on a wider choice 
of the sources which had become accessible, and envisaging a comprehensive 
system of knowledge, and integrating the Aristotelian theory of the principles 
with Neoplatonic cosmology and a Platonic model of the political-religious 
community.

Encompassing all of Aristotle’s logic, physics and metaphysics, the early 
Fåråb• was the first of the falåsifa to turn from the compromises of al-Kind•’s 
creationist Platonism in his “Integration of the opinions of the two Sages, 
Plato and Aristotle.” The philosopher realizes that the primary subjects of his 
inquiry are the universals, not as hypostatized species subsistent in the “world 
of the intellect,” such as ideas—or for that matter, mathematical entities—but 
in rebus, principles of reality subjected to induction and demonstration. He 
discards with the Platonic concept of anamnesis by re-interpreting it on Aristo-
telian lines: In substance, Aristotle agrees with Plato when he defines the true 
function of recollection in the beginning of the Posterior Analytics (the Kitåb 
al-Burhån).79 Al-Fåråb• added to earlier concepts of philosophy in Islam the 
radically Aristotelian concept of philosophy as a demonstrative science (>ilm 
al-burhån) which proves universally what in the particular sciences is deduced 
by particular “indications” or “signs” (dalå<il), and which perceives absolutely 
what in the individual religious-linguistic communities is conveyed individu-
ally. Philosophy as a science is a method of deduction and demonstration, not 
an ideology competing with theology: being an independent way toward know-
lege, it could be proclaimed as a safeguard for the religious community itself. 
It is here that Aristotle as being the author of exemplary and encyclopaedic 
instruction is transformed to become the authority of a method leading to abso-
lute knowledge. The philosopher claims rulership, not only inside the scientific 
community, but in the religious community as well.80

Al-Fåråb• integrated the sciences in the framework of a formal axioma-
tized system, the system of Aristotle’s Posterior Analytics. Philosophy and 
religion, the universal, rational sciences and the disciplines specific to the reli-
gious and linguistic community, are shown to be complementary parts of the 
same hierarchical system of cognition and interpretation. 
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Aristotle’s Posterior Analytics, the Kitåb al-Burhån, provided al-Fåråb• 
with a coherent system of deduction and demonstration, comprising all levels 
of rational activity, and serving as a guide for the division and hierarchical 
classification of the sciences, leading up to the First Philosophy, metaphysics. 
The basic text is the exordium of the Analytica posteriora (I.1): “All teaching 
and all learning come about from already existing knowledge”—by deduction 
(from the specific), induction (from the particular), and individual “signs” 
(dalå<il), or, in the practical arts, experience, in descending order of certainty. 
Al-Fåråb•’s own summary contains explicit consequences as to the coherence 
and ranking of the sciences:

“Of the theoretical sciences, some are universal [sc. the First Philosophy and the 
universal demonstrative sciences, Topica and Sophistica] and some are particular 
[sc. mathematics, physics and theology]. The universal sciences have in common 
the subjects, the objects and most of the premises, but differ in the conditions 
aforementioned [sc. in the relative status of the principles, subjects and objects 
used as premises in their specific demonstrations]. The particular sciences are 
all below the First Philosophy, participating in it in so far as all their subjects 
are below the Absolute Existent. This science [sc. First Philosophy] will employ 
universal premises which all the particular sciences employ in the way we have 
described [i.e., in the mode applied to their particular subject], while the particu-
lar sciences employ premises which are demonstrated in that science [sc. in First 
Philosophy].”81

The subordinate, particular sciences and the superior, universal sciences 
“help each other” in that “the prior sciences provide in the subsequent sciences 
the knowledge of the causes or of both the causes and the existence, while the 
subsequent sciences provide in the prior ones the existence.” It follows that

“each art (ßinå>a) which provides the principles of another art is governing (ra<•sa 
li-) that art. Now the governing science in an absolute manner among the sci-
ences which provide the causes, is that which provides the ultimate causes of the 
beings: and this must be the First Philosophy.”82

The mathematical sciences are posited between the physical and the 
metaphysical in being the “abstractive sciences,” abstracting immaterial enti-
ties from the material substances: separating intellectually what is inseparable 
from matter in its actual existence.83 The position of the mathematical sciences 
(>ilm al-ta>ål•m) in al-Fåråb•’s “Enumeration of the sciences” (I˙ßå< al->ul¥m) 
follows the same Aristotelian premisses: Theoretical arithmetic (arithmology, 
>ilm al->adad) examines numbers absolutely (bi-i†låq), abstracted in the mind 
(mujarrada f• l-dhihn) from the bodies and from anything actually numbered, 
sensible or not; through this universal application, it enters the realm of the 
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sciences84 (as against the particular, practical technai, like medicine, excluded 
from the >ul¥m in al-Fåråb•’s I˙ßå<).85 An analogous statement is made about 
theoretical geometry (handasa).86 This latter is qualified as being “more gen-
eral” than the one immediately following, optics (>ilm al-manåΩir), but optics 
requires the status of a science in its own right (an yufrad) in examining the 
“aspects” of what “appears to sight” (må yaΩharu li-l-baßar) as distinguished 
from “what (a thing) is in reality” (må huwa >alayhi bi-l-˙aq•qa).87

Here the scientific character of optics88 is pointed out as being a way 
to establish this difference by means of “certain demonstrations” (baråh•n 
yaq•niyya), that is, proofs yielding certain knowledge.89 In this, al-Fåråb• for-
mally asserts the claim of a mathematical science to demonstrative method, and 
to the quest for knowing reality as such—the objective of philosophy by defini-
tion. The same claim was raised, and had been raised before, by mathemati-
cians who (a) were able to point out Aristotle’s use of an optical example, in his 
Posterior Analytics, for elucidating the conclusion from sensible existence (to; 
o{ti) to cause (to; diovti) in scientific demonstration and the discussion of optical 
phenomena in the Ps.-Aristotelian Problemata Physica,90 (b) took the concept 
and method of geometrical apodeixis from Euclid, and (c) claimed the status 
of universals for the mathematical “causes” figuring as a middle term in such 
demonstration, in accordance with Aristotle’s own procedure (An. Post I.2).

One generation prior to al-Fåråb•, Qus†å ibn L¥qå (died c. 300/912–
13)—mathematician, philosopher, and translator of Greek scientific texts—
introduces his epistle on catoptrics with a praise of demonstrative science as 
“the finest of the humaniora,” and then continues to commend his own subject, 
optics, as being “the finest of the demonstrative sciences: the one in which the 
natural science and the science of geometry partake, since from the natural sci-
ence it takes the sensual perception, and from the geometrical, the demonstra-
tion by means of lines [i.e., linear constructions]”—such, par excellence, is the 
science of rays (catoptrics).91

From here Ibn al-Haytham was able to go on toward establishing math-
ematical astronomy and optics as the noblest of sciences about universalia in 
rebus.

Ibn Sina: the New Encyclopædia

Avicenna united and integrated the early traditions of falsafa, both in respect to 
groups of readership and professional circles, and also in uniting the Platonic 
and Peripatetic fundamentals. Taking up and completing the work of al-Fåråb•, 
he projected the conceptual framework of the Arabic Posterior Analytics onto 
all domains of scientific and philosophical knowledge, conceiving all strata of 
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cognition—including the highest degrees of discursive and intuitive thought 
(the latter being the ˙ads, bereft altogether of its mystical connotation)—as 
applications of the syllogism.

In his “Division of the Intellectual Sciences” (Taqs•m al->ul¥m al->aqli-
yya),92 the mathematical quadrivium is dealt with in a basic and straightforward 
manner, dependent upon the manuals of the Hellenistic tradition, and repeat-
ing the classical topos of the “intermediate position” of the mathematicals: 
Mathematics, as a part of the theoretical philosophy (al-˙ikma al-naΩariyya) is 
intermediate, al->ilm al-awsa†, between physics and metaphysics (“theology”); 
its objects, regarding their existence, are bound up with matter and motion, but 
their concepts—their “definitions” (˙ud¥d)—are not, since they can be under-
stood without reference to any bodily substrate.

Mathematics is duly mentioned in his “Autobiography,” which is an idealized cur-
riculum of the accomplished philosopher: In his youth, preceding systematic stud-
ies, he learned some practical geometry and “Indian calculation.” Then he studied 
the Isagoge and elementary logic with his first teacher in philosophy, al-Nåtil•, 
going on to Euclid and the Almagest, and then to physics and metaphysics. After 
learning the practical art of medicine, he took up the systematical study of theo-
retical philosophy, to be crowned by a deepened understanding of metaphysics.93

The question of the place of mathematics and its objects in the philosoph-
ical sciences is dealt with in some more detail in the Metaphysics (al-Ilåhiyyåt) 
of the philosophical encyclopædia al-Shifå<.94 The subject of mathematical sci-
ence is measure (al-miqdår), qua being abstracted, in the mind, from matter.95 
Number may be found both in sensible and in non-sensible objects; measure, 
whether said of a corporeal dimension or of a limited quantity taken from a 
continuous extension, is never separate from matter, although in the first sense 
(of dimension), it is a principle in the existence of all natural bodies, hence it is 
prior in essence to the sensible beings.96

He goes on to discuss the subject-matter of metaphysics, that is, “what 
is beyond nature,” Må ba>d al-†ab•>a.97 It might be called properly “the science 
of what is before nature,” because its objects of study are essentially and gen-
erally before the natural bodies. Now someone might object—someone, we 
might add, in the tradition of al-Kind• or the Ikhwån al-Íafå<—“that the ques-
tions of pure mathematics, studied in arithmetic and in geometry, are equally 
‘before nature,’ and especially number,” because this can exist independently 
of a material substrate. As for the lines and surfaces treated in geometry they 
subsist in bodies. The measure (miqdår) treated in geometry is not an absolute 
principle or form, as of prime matter, but accidental, as of bodies possessing 
the three dimensions width, breadth and height. As for arithmetic, it does not 
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study absolute number. It is true that number can be found in the separate 
beings, but it is also found in the natural things. It may arrive that in the imagi-
nation (f• l-wahm) a number abstracted from any adventitious substrate be 
conceived. But number cannot exist unless it adheres to a thing in existence (lå 
yumkinu an yak¥na l->adadu mawj¥dan illå >åri∂an li-shay<in f• l-wuj¥d). As 
far as being among the separate existents (al-ashå< al-mufåriqa), on the other 
hand, number cannot be subjected to any quantitative relation, augmentation or 
reduction, but subsists as it is. As an object of quantitative relation, augmenta-
tion or reduction, it must be in matter. This, however, is the subject of arithme-
tic: studying number in respect of it being in bodily nature, albeit abstracted 
from its natural states in the imagination (fa-idhan >ilmu l-˙isåbi min ˙aythu 
yanΩuru f• l->adadi innamå yanΩuru f•hi wa-qad ˙aßala lah¥ l-i>tibåru lladh• 
innamå yak¥nu lah¥ >inda kawnih• f• l-†ab•>a).98 Arithmetic, in consequence, is 
not a study of the essence of number, or of absolute number, but of number in 
its accidental inherence in matter. The essence of number, however, is an object 
of metaphysics indeed.

Book VIII of the Shifå< “On unity and multiplicity”99 brings an extended 
refutation of the Platonic doctrine of ideas, and especially—on the lines of 
Aristotle’s Metaphysics, A.5 (985b23ff.) —of the Pythagorean notion of subsis-
tent “numeric forms” or “numeric numbers” (313.11 al->adad al->adad•, 314.3 
al-ßuwar al->adadiyya), viz. of “numeric numbers from which they constitute 
the forms of the natural existents” (319.10 al-qå<il•na bi-l->adadi l->adadiyyi 
l-murakkib¥na minhå ßuwara l-†ab•>iyyiyåt).

On the one hand, Ibn S•nå insists on the primacy of philosophy—of the 
First Philosophy: on the rank of its subject matter, and the universal control 
of demonstrative method. On the other hand, he integrates the fundamentals 
of the quadrivium—geometry, arithmetic (including numerology), spherical 
astronomy (the science of the Almagest), and musical harmony—into the 
encyclopædia of the sciences established under the aegis of philosophy. But his 
is not a mathematicians’ philosophy; and contrary to all of his predecessors, 
he leaves out all aspects of mathematical science where observational practice 
meets demonstrative method.

3  Ibn al-Haytham: Mathematics as demonstrative science

The enormous success of Ibn S•nå’s encyclopedia was not only due to his 
new metaphysics, which promised to solve the antinomies of metaphysics and 
religious thought, but also to the systematic coherence of his logic and episte-
mology. Scientists and physicians were his most eager students and readers. It 
was not an Avicennian scientist, however, who at first, and uncompromisingly, 
made demonstrative science his very own:
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“Truth is sought for itself; and in seeking that which is sought for itself one is 
only concerned to find it. To find the truth is hard and the way to it is rough.
. . . But God has not protected scientists from error. . . . The seeker after the truth 
is, therefore, not he who studies the writings of the ancients and, following his 
natural disposition, puts his trust in them, but rather the one who suspects his 
faith in them and questions what he gathers from them, the one who submits 
to argument (al-˙ujja) and demonstration (burhån) and not to the arguments 
of a human being whose nature is fraught with all kinds of imperfection and 
deficiency.”100

The famous introduction to the Shuk¥k >alå Ba†lamy¥s of Avicenna’s con-
temporary Ibn al-Haytham (c. 354/965–432/1040) is like a radical restatement 
of Aristotle’s frequent proposal, before studying a problem, first to consider the 
opinions of the Ancients. It echoes in spirit, if not in its wording, the statement 
of Avicenna in the introduction to his Man†iq al-mashriqiyy•n, acknowledging 
the merit of “the most excellent of their [the Peripatetics’] predecessors,” Aris-
totle, but scoffing at “the common philosophasters who are infatuated with the 
Peripatetics and who think that no one else was ever guided by God or attained 
to his mercy.”101 But the approach and method of Ibn al-Haytham, although 
evolving from a mathematical science embedded in the traditional system of 
ancient cosmology, end up in a radical rejection of transmitted authority where 
it contradicts the results established by the very method of Aristotle. Aristotle 
remains a vague symbol of the authority of any philosophy whatsoever, while 
mathematical science becomes the foremost of the demonstrative sciences.

Evincing the principles of his science, Ibn al-Haytham enjoins the true 
scientist to be a true philosopher, following the rules of demonstration. Remarks 
on method are frequent. For the general principles of physics, Ibn al-Haytham 
turns to the opinions of “all the philosophers” or “those of the philosophers 
who arrived at the truth” (al-mu˙aqqiq¥n min al-falåsifa).102 Aristotle “laid 
down the principles from which the way to the truth will be found, its nature 
and substance be attained, and its essence and quiddity be found” (a˙kama 
l-ußula llat• f•hå yuslaku ilå l-˙aqqi fa-yudraku †ab•>atuh¥ wa-jawharuh¥ wa-
t¥jadu dhåtuh¥ wa-måhiyyatuh¥).103 Aristotle’s physical philosophy was, as a 
matter of course, his point of departure, an authority invoked frequently, and 
the subject of summaries and commentaries listed among his early writings. 
But in the end, Ibn al-Haytham remained an Aristotelian only in the sense of a 
general methodological orientation. In an earlier treatise “On the Configuration 
of the World” (f• Hay<at al->ålam),104 he expounds, in a separate appendix, the 
principles of celestial movement, all of which can be traced up to Aristotelian 
physics.105 In the later treatise “On the Light of the Moon” (f• Îaw< al-qamar), 
he spurns all mention of Aristotle’s celestial physics, such as the nature of the 
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fifth body, aithêr, to be used as premisses for his theory. Instead of metaphysi-
cal doctrines, such general principles as can be observed behind his argument 
are specific theorems, developed from physical theory, but closer to the facts 
under discussion.106 Aristotle—the only philosopher actually named—remains 
but a symbolic authority of demonstrative method: a virtual text, while his own 
writings fall into oblivion.

The observance of demonstrative method by itself had become the pass-
port of competence for the pursuit of knowledge in the epistemic community. 
When in his “Solution of the Aporias in Euclid’s Elements,” Ibn al-Haytham 
raises his own apodeictic method above the time-honored authority of the 
master of demonstration in geometry, he still refers to the principles of science 
pronounced by Proclus and Aristotle, but claiming their ultimate perfection: 
“The causes in matters scientific are the premises employed in the geometrical 
proofs—these are the proximate causes; but what we seek in each construction 
is the remote and first cause—and this has not been pointed out by any of the 
earlier nor any of the later authorities.”107

In Ibn al-Haytham’s remarks on his method of inquiry, the use of 
istiqrå< (epagôgê, “induction”)108 is an explicit pointer to the logical procedure 
described in the final chapter of Aristotle’s Posterior Analytics as the way to 
detect the principles or universals used as premisses in a valid demonstration. 
It is true that the word is used somewhat loosely by Ibn al-Haytham in many 
instances.109 According to al-Fåråb•’s reading of Aristotle, induction (istiqrå<) 
aims at establishing a universally affirmative or negative proposition. As a pro-
cedure, he understands induction as the act of surveying all or most of the par-
ticular cases falling under a given universal to see whether a certain predicate 
applies or does not apply to the particulars surveyed. If complete, the induction 
is called “perfect,” if incomplete, “imperfect.” al-Fåråb•’s understanding of 
induction in terms of a one by one examination of the particulars does not cor-
respond to the meaning of this term in the relevant Aristotelian passages; there, 
it is not attending to the particular cases, bur rather the advance from these 
particular cases to the corresponding universal which is known as induction. 
“It seems that al-Fåråb•’s understanding of the matter is a consequence of the 
fact that in the Arabic Prior Analytics, epagôgê was rendered as istiqrå<, a term 
that must in this case be taken to refer to the act of “collecting” the individual 
cases.”110 The mathematician Ibn al-Haytham goes on from here to check the 
limits of the theoretical model by means of systematic observation (i>tibår, 
“experience”).111

But Ibn al-Haytham, starting from the familiar concepts of Aristotelian 
epistemology and from the traditional models of astronomy and optics, trans-
formed both. In his hands, the objective of induction, instead of a collection of 
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universals from the particulars of any observation whatsoever, became focused 
on the refinement of complex procedures, apt to provide criteria for the validity 
of the models and hypotheses they were to yield. The true progress, owing to a 
true revolution in method, was based on a new conception of the use of mathe-
matics for the description of those particulars, collected and surveyed in order 
to support a perfect inductive inquiry yielding valid results. While mathematical 
models are based on the data of observation, the philosopher-mathematician is 
convinced of the essential coherence between valid models and the plan—the 
logos—of nature. This conception of mathematical relations in natural science 
is founded on the basic assumption that physical theory, in order to be valid, 
must deal with real bodies, and not with imaginary hypotheses, and must be 
developed through a process of observation, experiment, and induction. It is 
thus possible to conclude that the most simple of mathematical relationships, 
arrived at under the most excellent conditions of scientific observation, can be 
supposed to correspond to the structure of the physical world.112

Through induction from the phenomena, the Aristotelian-mathematician 
grasps for demonstrable evidence of the absolute—forms-in-matter, but none-
theless universal. The only medieval dissertation on the aesthetically beautiful 
not bound up with ethical instruction about the morally good is found in Ibn 
al-Haytham’s Optics: the beautiful (al-musta˙san, “what is regarded as beauti-
ful”) as harmonious proportion.113 The ultimate object of contemplation of the 
Pythagorean and Platonic philosophy of mathematics reappears in demonstra-
tive mathematics: not assimilation to the First Good, but absolute form.

Philosophy and Spherical Astronomy

The rationalism of Hellenistic philosophy, in Islam as before, is made visible 
through the reality of the cosmos. The order of the spheres, the eternal, circular 
motion of the heavenly bodies, the progression from the one and first cause to 
its manifestations in the celestial hierarchy and to the changeable and corrupt-
ible substances of the sublunar region evolved into an increasingly differenti-
ated system (in Arabic, the hay<a, “shape” or “configuration,” of the world). 
Plato, according to a well-known tradition, had enjoined the astronomers to 
find out “by the assumption of what uniform and orderly movements the appar-
ent motions of the planets can be acccounted for”—to “save the phenomena” 
through mathematics: both were founded on the eternal Ideas.114

This was achieved, or very nearly so, at an early age of Greek science. 
But Aristotle’s assumption that Eudoxus’ geometrical model of concentric 
spheres was a physical reality, a mechanical system in conformity with pure 
mathematics, and obeying the laws of natural movement established in his 
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Physics, created new problems. The more precise the astronomical observa-
tion, and the more intricate the mathematical calculus of the celestial revolu-
tions grew, the more difficult it became to reduce all phenomena of the heavens 
to a coherent system of uniform, circular motion: the natural movement of 
aithêr, the celestial substance. Based on two theorems of Apollonius, Ptolemy 
crowned the achievement of his predecessors, with an elaborate construction of 
epicyclic and eccentric vectors explaining (in the Almagest) the phenomena of 
the planetary cycles. And indeed, he took this both as a mathematical solution 
of Plato’s assignment and as a true model of the physical cosmos (a system of 
contiguous nested shells, as sketched in his Hypotheses).115 But this quantita-
tive conception had to deal with the variations in angular velocity of the eccen-
tric deferent, with the variances of precession and trepidation in the sphere of 
the fixed stars, and related difficulties, which violated the principle of uniform 
circular movement. Consequently, the application of Aristotle’s physical theory 
to the Ptolemaic system required a new planetary theory.116

The problematic was known, and was seen as a fundamental aporia, 
from the times of late Antiquity. Various doubts are raised and refuted by 
the commentators of Aristotle with reference to early astronomers as well as 
the philosophers of the Academy.117 While the main bulk of our literature is 
concerned with the conflict between the mathematical astronomy of Ptolemy 
and the physical philosophy of Aristotle, the Platonists had a difficult stand as 
well. Proclus the philosopher, having to give an appropriate place to astronomy 
among the four disciplines leading the way to the Good, had to defend Plato 
the astronomer against the “modern” astronomy of his time, devoting many 
pages to the task of refuting the assumption of eccentric spheres and epicyclic 
motion. The main fault of the astronomers was “to pass from the domain of the 
physical bodies to mathematical considerations,” which are imaginary, “and 
to give an account of the natural movements on the basis of things which do 
not exist in nature”—repeating, as it were, the mistake of the Pythagoreans 
criticized by Aristotle in the Metaphysics, in making mathematical realities 
account for natural processes.118

This is, in principle, the very same criticism which was raised against 
Ptolemy by Ibn al-Haytham, and by the Aristotelian philosopher-scientists 
of Andalusia. The astronomy received by the Arab authors represented the 
state of the art of professional science, and was adopted as well in al-Fåråb•’s 
philosophical cosmology. But the Ptolemaic system, while valid as a purely 
mathematical—geometrical—model to serve as a basis for hypothetical cal-
culus, was interpreted as physical reality, and hence, got into conflict with the 
principles of celestial physics.
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Ibn al-Haytham’s Critique of Ptolemy

Convinced of the power of inductive method, Ibn al-Haytham leads a vehe-
ment critique against those models of Ptolemaic astronomy which under the 
scrutiny of the mathematician proved insufficient to suit both the universal 
principles prevalent in the cosmos and the observation of the celestial motions. 
Ptolemy’s celestial model (hay<a) consists of magnitudes supposed to move in 
epicycles—imaginary vectors “which cannot have by [themselves] a sensible 
movement so as to produce something real in the world” (laysa yata˙arraku bi-
dhåtih• ˙arakatan ma˙s¥satan tu˙dithu ma>nan mawj¥dan f• l->ålam).119 What 
is more, “the assumptions made in Ptolemy’s astronomy (hay<a, i.e., a model of 
celestial mechanics) for the movements of the five [lower] planets are invalid, 
because they are contrary to theory (khårija >an al-qiyås, i.e., to the theory 
demonstrable from valid premisses) and to sound principles.”120

“It is not possible that the movement of the stars, being eternal, homogeneous, 
following a single order, unchangeable and incorruptible, should be against the 
principles of theory (khårij >an al-qiyås, para; to;n lovgon). It has become evident 
from all that has been said that the configuration (hay<a) established by Ptolemy 
for the motions of the five planets is invalid, and that a valid model to be con-
structed for the motions of the planets based (on the assumption) of bodies in 
homogeneous, eternal, and uniform movement, implying neither absurdity nor 
admitting doubt, will be different from the model established by Ptolemy.”121

While admitting that some of the contradictions found in the Almagest 
may be excused, being due to inadvertence, others were admitted consciously; 
indeed, Ptolemy admits that at some points, he was “compelled by the nature 
of our subject to use a procedure not in strict accordance with theory” (ashyå< 
khårija >an al-qiyås).122 Once the imaginary circles and lines (dawå<ir wa-
khu†¥† mutakhayyala) posited for the celestial model were assumed to apply to 
existing bodies, contradiction was bound to follow, but Ptolemy accepted this 
consciously, being fully aware of the methodological implications:123

“If someone posits a line in his imagination and moves it in his imagination, a 
line analogous to this line in the heaven will not move in the same way, and nei-
ther will a star, if somebody imagines a circle in the heaven and imagines a star 
to move along this circle, move on this same imaginary circle. If this is the case, 
then the models which Ptolemy imposed on the five planets are futile, and he 
posited them although being aware that they are futile, because he was not able to 
find others. But . . . it is not valid to assume a sensible, eternal, orderly movement 
unless it conforms to a valid model to be found in existing bodies.”124
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The philosopher-scientist takes the mathematician to task, and calls for 
the repair of a system branded as being alogon: contrary to the universals of 
“reasoned theory” on which demonstrative science rests.125 But he stays within 
the mathematical paradigm of explaining the physical phenomena: he does not 
call for the abolishment of the Ptolemaic system.126 Contrary to the spokesmen 
of the “Andalusian revolt”—we shall come back to this—he was content, in the 
final analysis, to replace the Aristotelian doctrine of the aetherial body with a 
physical theory of solid nested shells obeying the cinematic laws established 
and calculated by Ptolemy—a celestial mechanic in accordance with observa-
tional data. But while in his optics, he evolved a sophisticated methodology 
of experimental control of the mathematical models, the division between the 
celestial and sublunar realms of the cosmos—both in cosmological theory and 
in factual experience—forbade an inductive, experimental control in the light 
of the results obtained.127

Among mathematicians, criticism of Aristotle the mathematician was growing, 
and was raised explicitely. Abu ’l-Fut¥˙ Ibn al-Sar• (Ibn al-Íalå˙, died in 548/
1153) wrote a treatise refuting Aristotle’s assumption, put forth in De Caelo III. 
8: 306b3–8, that there are two regular solids which can fill up three-dimensional 
space, the pyramid and the cube, and proving that cubes only can fill a space. 
See the text ed. by Mubahat Türker, “‡bnu’ß-Íala˙’ın De Coelo ve onun £erhleri 
hakkındaki tenkitleri,” Ara£tırma 2 (Ankara, 1964): 1–79, p. 71f.

4  The Primacy of doctrine: the Andalusion reaction

“Once such imaginary assumptions were applied to existing bodies, contradic-
tion followed as a consequence.”128 Ibn al-Haytham’s point of criticism against 
Ptolemy was at the basis of the attacks against Ptolemy rising in the Andalus. 
But the philosophers of Muslim Spain would deny the mathematicians sufficient 
competence to grasp the intelligible reality of the cosmos. Starting with Ibn 
Båjja, they would attack Ibn al-Haytham for trespassing into foreign territory:

“Al-Zarqålluh did not cease to criticize Ptolemy in most of his opinions. Others 
before him have held this opinion, and I do not wonder that Ibn al-Haytham 
detected his [Ptolemy’s] evident errors; and if you want to study what I referred 
to, read Ibn al-Haytham’s treatise «On the Doubts Raised Against Ptolemy. . . .» 
But if you should look at this treatise, you will detect that Ibn al-Haytham read 
this discipline only in the most elementary manner (innah¥ lam yaqra<i l-ßinå>ata 
illå min ashali l-†uruq), and perhaps he could not decide in his time if he should 
give a firm judgement in view of its refutation, or if he should just disregard it. 
Nay, he was not one of true experts of his science, and much farther off the goal 
than al-Zarqålluh.”129
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There is more to this attack on Ibn al-Haytham than a subtle point of 
mathematical-physical analysis. It is the start of a fierce competition for the 
prerogative of universal, rational knowledge. Before going into the notorious 
problem of the planetary motions, I would like to recapitulate a more specific 
criticism raised by Ibn Rushd in his Commentary-Paraphrase (Talkh•ß) of 
Aristotle’s Meteorologica, referring to Ibn al-Haytham’s explanation of the 
halo surrounding the moon.

In his commentary, he looks down upon the doubts of the earlier com-
mentators, and exalts Aristotle whom God distinguished among all mankind. 
In a comment on Meteorologica III.3, he refers to Ibn al-Haytham’s explana-
tion of the shape of the halo, “why it is a circle and why it appears round the 
sun or the moon or one of the other stars” (Meteor. 372b12–13). At the outset, 
he makes a distinction between the methods of “this science” and mathemati-
cal optics:

“Et quia subiectum istorum [sc. signorum e.g. halonis etc.] sunt corpora natura-
lia, et cum hoc ipsa accidunt in situ determinato et in figuris determinatis, neces-
sarium est, ut sit investigatio de eis secundum unum modum naturalis, secundum 
alium mathematica. Nos autem consideremus hoc de dispositione istorum de 
eis, de quibus considerat naturalis, utendo illis rebus quae declaratae sunt in 
mathematicis tanquam suppositionibus et fundamentis positis, et maxime eis, de 
quorum consuetudine est ut accipiantur hic principia directionis.”130

In his exposition, Ibn al-Haytham had made an explicit statement on 
the role of mathematics: the substratum of the object under consideration is a 
physical body, hence the method of investigation must be physical; but since 
these objects have a round shape, they must also be investigated mathemati-
cally.131 “This is why the inquiry by means of which the nature of these two 
effects is investigated comes to be composed of a physical and a mathematical 
(examination).”132 This is precisely Ibn Rushd’s point of criticism—or rather, 
apology of Aristotle’s apparent omission: Physical science, that is to say: the 
philosophical theory of physical phenomena, and the mathematical science of 
optics are two disciplines of different orders. What Ibn al-Haytham explained, 
in his “famous treatise found in the hands of everybody,” “does not belong to 
this science” (laysa min hådhå l->ilm). In his own Epitome, Ibn Rushd contin-
ues, he had taken the mathematical principles as postulates. But mathematics 
and physical science differ with regard to the causes they look into: while the 
philosopher studies the proximate causes, essential and evident, of the phe-
nomena qua physical bodies, the mathematical science of optics studies the 
remote causes: geometrical models accidental to the physical substances.133 
Those who confound the two sciences will make mistakes such as Ibn 
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al-Haytham committed. The principles of optics cannot serve as premises in 
a valid demonstration brought forward in physical philosophy.134 “Praise to 
the Lord,” he continues, “who distinguished him [Aristotle] with the human 
perfection. What he understood easily, is understood by the common man only 
after prolonged study and many difficulties, and what others understand easily 
is contrary to what is understood [to be correct] by him.”135

Is he singing in the dark? Averroes takes care not to engage in a discus-
sion of Ibn al-Haytham’s advanced mathematics against Aristotle’s. Indeed, 
Aristotle had evidently omitted to give a comprehensive explanation which 
would “save the phenomena” in the context of mathematical optics. Hence 
Averroes felt the need for an apology—an apology of his own philosophy 
which, in order to be universally valid, was dependent on the binding authority 
of Aristotle’s method.

On the authority of Aristotle, only the physical part of philosophy stud-
ies real substances; the abstraction of mathematics is but a tool fur the purpose 
of analogous description, and cannot penetrate into reality in its own right.136 
Interpreting Plato’s program of intellectual education, Averroes foists upon 
him a decisive shift in view of the rank of the mathematicals:

“The intelligibles [of the mathematical sciences] are defective intelligibles since 
they are not conceived of in any particular objects but in what imitates them. 
Hence Plato divides the intelligibles of things into two parts. One of them he calls 
direct; these are the intelligibles of things that truly are. And the second [he calls 
thought]; these are the intelligibles of the appearances of existing things—and 
they are the mathematical sciences [Plato, Resp. VII, 533E4–5]. . . . Plato asserts 
of them that they are not of the rank of the other theoretical sciences as regards 
human perfection. Hence he says of them that they are sciences whose begin-
nings are unknown and whose ends are unknown; and [only] what is between 
the beginnings and the ends is known [Resp. VII, 533B6–C8]. This being so, the 
mathematical sciences are not intended [mekhuwwanot] initially and essentially 
for human perfection, as is the case with physics and metaphsics. Although they 
differ in this respect—and particularly in what these two sciences take from them 
[sc., the mathematical sciences] by way of principles for the investigation of the 
end (as when the divine science [i.e., metaphysics] accepts the number of move-
ments from astronomy)—this difference is not only with respect to their kinds 
[i.e., arithmetic, geometry, astronomy, and music], but also exists with respect to 
the parts of the particular science.”137

The mathematician gives a descriptive model of the phenomena, apt to 
yield correct calculations, but abstracted from reality; the physical philosopher 
looks into the proximate causes governing the reality of the world. In cos-
mology, the noblest object of both physics and mathematical astronomy, the 
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philosopher proves his competence to grasp the highest, yet remote object of 
intellectual study.138

The Andalusian Restoration of Aristotle’s Cosmos 

The relation between the “physical science” (al->ilm al-†ab•>•) of philosophy 
and mathematical astronomy, and the relation of either to the cosmic reality, 
was discussed from the side of natural philosophy throughout the Andalusian 
school of falsafa: Ibn Båjja, Ibn ˇufayl, Ibn Rushd, al-Bi†r¥j•, Maimonides. 
Starting from the same principles of cosmological theory, Arabic astronomers 
of the West put forward solutions based on the Aristotelian models of homo-
centric spheres. Al-Zarqålluh, Ibn ˇufayl (Ibn Rushd’s predecessor as physi-
cian to the Almohad court) and the latter’s disciple, the astronomer Ab¥ Is˙åq 
al-Bi†r¥j• were the most prominent advocats of such theories. The point of criti-
cism turned against Ptolemy and his followers remains the same as before: The 
calculus of the mathematicians may fit, albeit imperfectly, the observations, but 
does not account for the actual processes governed by uniform principles and 
eternal laws; indeed, it is in evident contradiction to the principles established 
by Aristotle. Going further than previous critics of Ptolemy, they made bold 
to build a new configuration which should conform both to the principles and 
to the calculus matched with observation. Previous failure to achieve this was 
due not to the principles set up by the philosophers but to the imperfections of 
observation based on sensual data. 139

Ibn Båjja made this clear in the terms of logical methodology in his short 
treatise f• >Ilm al-hay<a, starting out from Aristotle’s Posterior Analytics: The 
astronomers have to fall back on data arrived at indirectly, through observation 
and calculation. In trying to build a universal proof of their hay<a, they set up 
a syllogism in which the inferences of such findings will form the middle term 
of a syllogism; hence, their results must be at variance with the principles of 
physical science.140

Ibn Rushd was not enough of an astronomer to evaluate the theories 
of his predecessors and contemporaries mathematically. He used to say so 
himself.141 His approach is dogmatical: Aristotle’s physical and metaphysical 
doctrine, seen and interpreted as a closed system, advancing from the evidence 
and induction of existence in physics to the causes and principles of essence in 
metaphysics, required the astronomers—as in Plato’s assignment—to provide 
calculable models which would link the data of observation with the essential, 
unchanging principles of the eternal circular movement: principles “pointing” 
in their turn to the cosmic essences of the spheres, immaterial soul-intellects 
moved by the desire to emulate the First Mover.
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Aristotle’s theory of homocentric spheres,142 and Averroes’ defense of 
the Aristotelian model against the Ptolemaic system, proceed from two basic 
assumptions: The eternal movement of the celestial bodies must be absolutely 
regular;143 and the theories explaining their apparent movements should not 
regard the spheres and planets as mere mathematical entities, but as animate 
substances, “enjoying life and action.”144 Ibn Rushd’s attempt to reconstruct 
Aristotle’s true system—an attempt hampered by the overwhelming success of 
the Ptolemaic system in mathematical astronomy, and compounded by errors 
of translation in the Arabic version of the Metaphysics145—, is accompanied 
by constant attacks against Ptolemy’s use of epicycles and excentric cycles in 
his interpretation of the planetary movements, starting from his Epitome of 
Aristotle’s De Caelo:

“The apparent advancing and receding motion of the (sphere of the fixed) stars 
cannot exist in their actual motion. . . . This precession and recession was not 
observed by the ancient Greeks except in the case of the planets, nor were many 
of the multiple motions established by Ptolemy observed by the Babylonians, 
such as the movement of the epicycles.”146

The movement of the spheres must be homocentric, because the center 
of the earth must coincide with the centre of the universe.147 Ptolemy deviated 
from this principle, because in his model, the center of the deferent axis (car-
rying the epicycles) must be excentric against the centre of the earth, and the 
centre of the epicycle moves on the eccentric with varying velocity, in such 
a way that only when seen from the punctum aequans—that is, the point on 
the line of apsides whose distance from the earth is the double of the linear 
eccentricity—the motion in the eccentric appears to be uniform.148 Averroes 
objects:

“That the earth is in the center and at rest is attested by the demonstrations which 
the mathematicians are accustomed to apply to these matters. If it were not in 
the centre, as Ptolemy claimed, three possibilities would obtain, all of which 
would result in absurdities and are in evident contradiction with the evidence of 
observation.”149

The problem accompanied Averroes all his life and is prominent in the 
Long Commentaries on both the Metaphysics and the De Caelo, the magiste-
rial works of his last years, containing numerous references to the problems of 
celestial mechanics where the Almagest was at variance with Aristotle.

In his early work, the project of Ibn Rushd was limited to a “state of the art” sum-
mary of the encyclopaedia of the rational sciences, limited to “what is necessary 
for the human perfection” as a rational being, among the basic methods of juris-
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prudence, of logic, and of natural philosophy.150 The same is explicitely indicated 
for his “Summary of the Almagest,”151 pointing to Ibn al-Haytham as an authority 
on this science, while denying the astronomers the philosophers’ competence in 
the methods of demonstrative science.152 In his early Compendium (Jawåmi>) of 
the Metaphysics (written in the early fifties of the 6th century A.H.), following 
closely the cosmology of al-Fåråb• (and revised in a second version), Averroes 
seems to find epicycles acceptable. But attacks on Ptolemy start about this time 
already, in the physical Compendia as well as in the Summary of the Almagest: 
The method followed by the mathematicians offers neither “signs” (dalå<il) nor 
demonstrations; most of what they attribute to the celestial bodies is impossible, 
notably the epicycle.153 The most detailed discussion of the celestial movements, 
based on Metaph. XII.8, is found in his Great Commentary (Tafs•r) of the 
Metaph., completed a few years before his death c. 590/1194. The commenta-
tor founds his attack on the principle of simple, circular movement found in the 
celestial bodies, a principle in conflict with the system of eccentric circles and 
epicycles, to be replaced by a system of homocentric circles of each planet where 
the poles of one circle rotate in the plane of the adjacent one.154

Leaving aside the intricacies of these discussions with regard to the tech-
nicalities of astronomy and mathematics155—what is striking, and relevant for a 
final perspective of Averroes’ scientific approach, is the apparent subordination 
of applied science to physical theory: Aristotle’s true philosophy was founded 
upon true science; if this science of the Ancients could be restored, all pieces in 
the cosmic puzzle would fall into place. Basically, the issue under discussion is 
sound philosophic method.

Referring to Aristotle’s De Caelo, chapter II.3, Ibn Rushd elaborates 
Aristotle’s note that “we have to pursue our inquiries at a distance—a distance 
created not so much by our spatial position as by the fact that our senses enable 
us to perceive very few of the attributes of the heavenly bodies” (268a4–7): 
With regard to these things, only certain premises are available to human 
induction, 

“and the things from which are acquired the premises, by which man scrutinizes 
many of the things concerning the heavenly body and through which he aspires 
to know their causes, are derived from the things which are closest to those in 
resemblance, viz. the animate bodies, and especially man, since it has been made 
clear that this body is animate. However, it is evident that this (kind of statement) 
is ambiguous (yuqål bil-tashk•k) [being ambiguous] about what is prior and pos-
terior, and therefore this kind of concept and judgment is weak.”156 

The systematic reasoning behind Averroes’ cross-references to the other 
parts of philosophy is based on rules of the burhån: The “demonstration of 
existence” will be provided in the various natural sciences, as, for example, the 
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parts of the soul in the psychological part of natural philosophy; the “demon-
stration of causes” is the privilege of a discipline higher in rank with regard to 
the lower levels, and for the very highest can be given only by induction from 
dalå<il perceived in the posterior ones.157

This systematic relationship between natural philosophy and metaphys-
ics is underlined in many statements from the very earliest phase of Averroes’ 
activity, as in the Compendia of the ˇab•>iyyåt and of the Metaphysica:

“Demonstration in an absolute way (demonstratio simpliciter, al-burhån al- 
mu†laq)158 in this science is founded on the propositions accepted from natural 
science and theological science: It has been explained in the Physics that the 
mover of the celestial bodies is not in matter, and in the book De Anima that what 
is of this kind is intellect, and in the first treatise [of De Anima] that the intel-
ligible form [i.e., soul] is moved only through desire coming from its intellect; 
hence this must have its object in imagination—it is a celestial body exercising 
desire.”159

The fundamentals of epistemology, where the demonstration of exis-
tence, essence and cause constitutes a hierarchy and interdependence of the 
sciences, of physics and metaphysics, not only justify, but require systematic 
cross-references between the disciplines; these principles were established by 
Aristotle in Metaph. VI.1, and are constantly called upon by Averroes as a 
guideline for philosophic method.160

Another case in point is a remark on the order of the planets: Contrary to 
the doctrine of Ptolemaeic astronomy, the sphere of the Sun must be assumed 
between the Moon and the remaining planets in order to conform with the 
principles established by Aristotele. In fact, however, Aristotle had not dis-
cussed the relative positions, distances, and velocities of the stars and planets 
in detail; these topics empirical astronomy was left to deal with adequately (De 
Caelo II. 10, 291a29–32). The astronomer, Averroes explains (Comm mag. De 
Caelo, II c. 57, fol. 64ra33–56 ad locum), demonstrates the existence of data 
apparent from or indicated by sense perception, regarded as mathematical enti-
ties abstracted from matter, while the natural philosopher gives the causes of 
the same subjects regarded as natural substances. But the philosopher refers to 
astronomy, as Aristotle does in De Caelo II.10, because he considers the causes 
of those things whose existence has been established in astronomy:

“Now both the natural philosopher and the astronomer engage in the study of 
these questions; however, the astronomer mainly gives the existence [quia; 
Arabic, anna l-shay<] while the natural philosopher gives the cause [propter quid; 
Arabic, li-ma l-shay<]. What the astronomer mainly gives is based only on those 
things that appear to the senses . . . , the natural philosopher, however, endeavours 
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to give the cause why this is so [propter quam hoc est supra ipsam; Arabic, li-ma 
huwa >alå hådhå].”161

The relation between the angular velocity of the planets and their dis-
tances with regard to the first heaven underlies a general principle stated by 
Aristotle: The absolute speed of the planet nearest to the first revolution (the 
circle of the fixed stars)—that is, Saturn—is greatest, while the others are 
slower, the decrease in velocity being in proportion with their distance (De 
Caelo II 10, 291b6–10).162 While recognizing this general principle, Ptolemy 
tried to establish the precise relative order of the planets with respect to the 
Sun.163 Based on observation and computation of the relative distance, and 
on the apparent eccentricity of the spheres of Mercury and the Moon, he con-
cluded that the spheres of Moon, Mercury, and Venus lie below the Sun while 
Mars, Jupiter and Saturn lie above.164

Unabashed by the reference of the Arabic version to the as˙åb al- 
Majis†•—Aristotle’s mathêmatikoi (291b9)—Ibn Rushd declares that the 
conditions underlying Aristotle’s exposition are reconcilable only with the 
“opinion of those who say that the Sun is above Mercury and Venus, and not 
below—here the astronomers are at variance, and the truth of the matter has 
not yet been established.”165 However, Aristotle’s statement on the connection 
between the planet’s velocity and its distance from the first heaven does not 
imply a mathematical, proportional ratio; even though the Sun’s motion may 
be quicker than the motions of Mercury and Venus, it may nevertheless move 
in a sphere above, “because its potency surpasses theirs . . . because there, local 
proximity is similar to mutual proximity of the essences, and this is proximity 
in knowledge and in rational cognition: the stronger the cognition of the first 
movement, the more perfect the desire toward it will be, and the stronger the 
desire, the quicker its motion will be.”166

In linking the cosmic order with Aristotle’s metaphysics—the cosmic 
motion originates from the conscious desire of rational souls toward the 
Unmoved Mover—Averroes puts forward the reasoning of philosophy 
against the celestial mechanics of the astronomers: isti enim motus quos ponit 
Tholomeus fundantur super . . . fundamenta quae non conveniunt scientiae nat-
urali.167 But does he betray his own principles, making the natural phaenomena 
and the facts established by natural science subordinate to a-priori postulates of 
metaphysics? The doubt and caution expressed, again and again, in view of the 
difficult and controversial field of astronomy may convince us that he is not: 
The very passion of his aporia between astronomy and metaphysics betrays his 
awareness that only a true understanding of the astronomical cosmos will yield 
true answers to the ultimate questions of metaphysics. Indeed, it is the task of 
metaphysics to “save the phenomena” of observation.
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However, the Commentator deplores the astronomers’ (and his own) 
inability to reconstruct the true Aristotelian cosmos, that is, to provide not just 
a mathematical emulation which does not contradict his physics, but a true 
physical astronomy. Regarding the order of the planets, as also the models con-
tradicting Aristotle’s doctrine of homocentric spheres, “the necessary move-
ments in these things have not yet been demonstrated in this science: for the 
movements assumed by Ptolemy are based on premisses not reconcilable with 
natural science, sc. eccentrics and epicycles, which are both false.”168 He felt 
the truth to be near at hand:

“Maybe, if God will grant me life, I shall investigate the [science of] the sphere 
of Aristotle’s age (al-hay<atu llat• kånat f• >ahdi Aris†¥); and it will turn out that 
it did not contain any [such] absurdities with respect to physical science. This 
is [the system founded upon] what Aristotle called ‘spiral motions’ (al-˙arakåt 
al-lawlabiyya). It is, as I think, a movement where the poles of one sphere turn 
about the poles of another sphere, so that its own movement will proceed along a 
spiral line, as for example the motion of the sun with regard to the diurnal motion. 
On the basis of [the assumption of] this motion we can give [an explanation of] 
what happens to the star, such as the differences in movement, backward move-
ment and movement in a straight line. We shall make a study of these motions, 
for it is impossible that there should be irregularity in the celestial bodies unless 
[explained] in this way.”169

It is a tragic irony that this “spiral motion” (˙araka lawlabiyya), the term 
behind which Averroes suspected the final solution, goes back to a mistake 
of the translator.170 But in his old age he despaired of this hope. A few years 
before his death, he returned to the problem of the planetary movements in his 
Commentarium magnum of the Metaphysics (in the context of Aristotle’s dis-
cussion of the number of the eternal moving principles of the heavens, Metaph. 
L. 8.1073a14ff.).171

Averroes is ready to concede to Aristotle that “the specialist of this sci-
ence” must accept from astronomy the information it gives about the number 
of the motions, but he insists that he need not accept “the other matters it 
comprises.”172 For the discipline of astronomy which inquires into the celestial 
motions “cannot establish, on the basis of the spherical motions apparent to us, 
the course of the causes unless it does not contradict the principles of physics 
(illå må laysa yal˙aqu min wa∂>ih• mu˙ålun f• l->ilmi l-†ab•>• [i.e., physical 
philosophy]).”173 The apparent irregularities in the planetary motions “do not 
conform to the nature of the motions of the celestial bodies; that is, it has 
become evident in the physical science that all their motions are regular.”174 
The astronomer must therefore postulate a model from which the phenomena 
(al-a˙wål al-Ωåhira) would result without violating the principles of natural 
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philosophy (min ghayri an yalzama minhå mu˙ålun f• l->ilmi l-†ab•>•).175 The 
complexities involved—composite movements, excentricities, epicycles—
result in disagreeement among the “modern” mathematicians (al-˙adathu 
mina l-ta>ål•miyy•n) as to the number of these motions: an undisguised allu-
sion to Ibn al-Haythams’s Shuk¥k; and here, Ibn Rushd is eager to note that 
the calculus based on such mathematical models is, in certain cases at least, 
in blatant disagreement with observed phenomena.176 The mathematicians of 
Aristotle’s time, who provided him with a tentative solution, are commended 
for being in closer agreement with physical philosophy than Ptolemy and the 
“moderns.” The theory of epicycles, positing centres of motion beside the 
centre of the world, and the model of excentric spheres, involving “superfluous 
bodies in heaven with no purpose but as filling (˙ashwan)” are both “contrary 
to nature.”177

The only solution Averroes can propose is a closer examination of the 
mathematical astronomy Aristotle himself relied upon, that is, the theories 
of Eudoxus and Callippus; perhaps the model of “spiral motion” he ascribes 
to Aristotle “would allow us to do without these two things [i.e., epicycles 
and eccentric spheres]. . . . Ptolemy failed to notice what had compelled the 
Ancients to accept spiral motions, namely the impossibility of the epicycle 
and the eccentric sphere.” But—and here we return to the starting point of our 
inquiry—“in our time, astronomy is no longer something real; the model exist-
ing in our time is a model conforming to calculation, not to reality.”178

In this, Ibn Rushd not only observed the letter of Aristotle’s doctrine, but 
also the spirit of his science, where metaphysics investigated a cosmic reality, 
not just “units with a serial order,” but “enjoying life and action”—in the final 
analysis, Plato’s heritage in the Aristotelian encyclopaedia.

5  In the Face of the Almighty: Theology and Science

The models of concentric planetary spheres, postulated by Ibn Båjja, under-
stood but vaguely by Ibn Rushd, and constructed, however imperfectly, by 
al-Bi†r¥j•, had little influence beyond al-Andalus and the oncoming decline of 
Western Muslim civilization. Neither here, nor indeed in the coming bloom of 
the mathematical sciences in the East, the philosophical Weltbild played a rôle 
in the improvement of the old approaches, let alone a renewal apt to launch a 
new paradigm. Science thrived at the hands of theologians who left philosophy 
to the falåsifa who in vain hat whetted their steel to tackle the apories of the 
hay<a, and discarded with principles which had proved useless for the practical 
tasks of the art.

*
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The apories admitted, however unwillingly, by Ibn Rushd, were stated 
bluntly and uncompromisingly, in a remarkable passage of the “Guide of the 
Perplexed,” Dalålat al-˙å<ir•n, of the Jewish jurist, physician and philosopher 
Maimonides, on the authority of Ibn Båjja:179

“As far as the action of ordering the motions and making the course of the stars 
conform to what is seen is concerned, everything depends on two principles: 
either that of the epicycles or that of the eccentric spheres or on both of them. . . . 
Both those principles are entirely outside the bounds of qiyås [logos, the method 
of demonstrative science] and opposed to all that has been made clear in natural 
science [al->ilm al-†ab•>•, i.e., the part of philosophy demonstrating rationally the 
processes of the physical world].”

While explaining the difficulties involved, controverting the principles 
established by Aristotle, and after going into the problems of planetary motion 
in detail, Maimonides concludes:

“Consider how great these difficulties are. If what Aristotle has stated with 
regard to natural science is true, there are no epicycles or eccentric circles and 
everything revolves around the center of the earth. But in that case how can the 
various motions of the stars come about? Is it in any way possible that motion 
should be on the one hand circular, uniform, and perfect, and on the other hand 
the things that are observable should be observed in consequence of it, unless 
this be accounted for by making use of one of the two principles [sc. epicycles 
or eccentric circles] or of both of them? This consideration is all the stronger 
because what is calculated on the hypotheses of the two principles is not at fault 
even by a minute. . . . This is the true perplexity. However, . . . this does not affect 
the astronomer. For his purpose is not to tell us in which way the spheres truly 
are [laysa maqß¥duh¥ an yukhbiranå bi-ß¥rati wuj¥di l-aflåki kayfa hiya], but to 
posit an astronomical system in which it would be possible for the motions to be 
circular and uniform and to correspond to what is apprehended through sight [an 
yafri∂a hay<atan yumkinu bihå an tak¥na l-˙arakåtu dawriyyatan wa-mustawi-
yatan wa-tu†åbiqa må yudraku >iyånan], regardless of whether or not things are 
thus in fact [kåna l-amru ka-dhålika aw lam yakun].”

Ibn Båjja already had expressed doubts whether Aristotle was aware of 
some of the intricacies of planetary motion, sc. the eccentricity of the sun: 
indeed, he was not, and would have been baffled if he had been—resorting, as 
in other cases, to “guessing and conjecturing.”

“However, regarding all that is in heaven, man grasps nothing but a small 
measure of what is mathematical [illå bi-hådhå l-qadri l-ta>l•miyyi l-yas•r, i.e., 
the little that can be established mathematically]. I shall accordingly say in the 
manner of poetical preciousness: ‘The heavens are the heavens of the Lord, but 
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the earth hath He given to the sons of man’ [Ps. 115:16]. I mean thereby that the 
deity alone knows the true reality [˙aq•qat al-samå<], the nature, the substance, 
the form, the motions, and the causes of the heavens.”180

The decision taken by the great Jewish thinker is in tune as well with the 
overall development of Muslim intellectual attitudes in the later Middle Ages: 
while theology becomes scientific, science becomes theological. The agencies 
of this transition are manifold, and comport a far-reaching shift in the social 
and intellectual milieu of science in Islam. From the perspective of philosophy, 
the main factors are the Hellenization of Kalåm in the school of al-Ghazål•, 
notably in the attendance of Fakr-al-D•n al-Råz• in Sunn•, and of Naß•r-al-D•n 
al-ˇ¥s• in Sh•>• Islam, the adoption of Avicenna’s encyclopaedia of intellectual 
knowledge in the religious community, and at the same the elimination of the 
stumbling stones in Aristotelian physics—the eternity of the world, and the 
laws of physical causality submitting God to a necessity imposed by reason. In 
consequence, the defense of the rational sciences was undertaken by members 
of the same religious community who regarded the methods of demonstration 
as an indispensable basis of sound argument in the service of Islam. As a fur-
ther consequence of this development in the social and intellectual communi-
ties of rational science, the teaching traditions of kalåm, falsafa, and riyå∂iyyåt 
grow from diverse branches to become parts of an integrated curriculum of 
learning in the Iranian, and later on in the Mughal and Ottoman madrasas.181

Following al-Ghazål•, the Ash>arite interpretation of scientific knowl-
edge182 defended logical method as a “just scale” (al-qis†ås al-mustaq•m) 
and “vessel of knowledge” (mi>yår al->ilm), and in the same vein, the teach-
ers of the sciences—many of whom were powerful authorities in theology as 
well—referred to the epistemology of the Analytica Posteriora, as restated by 
al-Fåråb• and realized in his system of the sciences. As al-ˇ¥s• states in his 
epochal Tadhkira on theoretic astronomy, “every science has a subject which 
is investigated in that discipline, and principles, either self-evident, or else 
obscure—in which case they are proved in another science and are taken for 
granted in this science,” and in the case of astronomy, “its principles that need 
proof are demonstrated in three sciences: metaphysics, geometry, and natural 
philosophy (al-†ab•>iyyåt).”183 This is closely reminiscent of al-Fåråb•’s Kitåb 
al-Burhån.184

In the same vein, >A∂ud-al-D•n al-°j• (d. 1355), in his monumental 
Summa of Ash>arite Kalåm, presents the principles of astronomy as neutral 
with respect to religious law, “prohibition does not extend to them, being 
neither an object of belief nor subject to affirmation or negation.” But this 
compromise is reached at a price: “These [sc. the hypotheses of mathemati-
cal astronomy] are imaginary things that have no external existence, . . . mere 
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imaginings which are more tenuous than a spider’s web.” Like in the apories 
stated by Averroes and admitted by Maimonides, we come back to the basic 
conflict between philosophy and astronomy: the conflict about the reality of 
their object of study.185 There was, however, an alternative open to the theolo-
gian-astronomer, assuming full responsibility for his science while discarding 
with the principles taken from falsafa. In a commentary on al-ˇ¥s•’s dogmatic, 
Tajr•d al->aqå<id, al-Q¥shj•—an astronomer from the circle of Ulugh-Bek, 
active in Istanbul until his death in 879/1474—seeks to establish his science 
in a creation not governed by the physical laws of causality, but by the will 
of God.186 “What is stated in the science of astronomy does not depend upon 
physical (†ab•>iyya) and metaphysical (ilåhiyya) premises. . . . For of what is 
stated in this science, some things are geometrical premises, which are not 
open to doubt; others are premises arrived at through intuition (muqaddamåt 
˙adsiyya), 187 as we have mentioned; others are premises determined by reason 
in accordance with the apprehension of what is most suitable and appropriate. 
On this basis, “it is sufficient for the scientist to conceive, from among the 
possible models, the one by which the circumstances of the planets with their 
manifold irregularities may be put in order in such a way as to facilitate their 
determination of the positions and conjunctions of these planets for any time 
they might wish and so as to conform with perception and sight, this in a way 
that the intellect and the mind find wondrous.”188 Bent to describe adequately 
the opificium mundi, the theologian-scientist felt free to discard the causes pro-
claimed by the philosophers as universal principles, and going further, felt free 
to explore possibilities contradicting the principles of Aristotelian physics.189

It was a proud and competent astronomer who took Ptolemy himself 
to task for an metabasis eis allo genos—trespassing into the foreign domain 
of cosmology: al-B•r¥n• who in his Qån¥n al-Mas>¥d• upbraided Ptolemy for 
having, in his Planetary Hypotheses, “deviated from the path he had followed 
in the Almagest, [having taken up] that which related to opinions outside of this 
science, that is in the belief of people that the celestial bodies have life, percep-
tion, sensation, and the choice of the noblest motions.”190

The alternative, chosen by many generations of creative mathematicians 
and astronomers, was to follow the principles of demonstrative science as they 
had been established by Aristotle, reformulated by al-Fåråb• as supreme scien-
tific method and restated by Ibn S•nå, and at the same time, leaving cosmology 
aside: Conceding that every science has its own principles; that one science 
will build upon the other; and that metaphysics comes not first, but next (if 
at all). The winds of change rose not from the side of philosophers, but from 
mathematicians who observed, described and calculated the phenomena, and 
contemplated the wonder of creation in the eternal splendor of the cosmic 
order.



Gerhard Endress 160 Mathematics and Philosophy in Medieval Islam 161

Notes

1. Ibn Rushd, Shar˙ k. al-Samå< wa-l->ålam, I, c. 90; ms. Tunis, A˙madiyya, no. 5538, 
fol. 70a = ed. in facsimile by G. Endress, Commentary on Aristotle’s Book On the 
Heaven and the Universe, by Ibn Rushd (Frankfurt am Main: Institute for the History 
of Arabic-Islamic Science, 1994), 47 (passage missing in the Latin version of Michael 
Scot, and perhaps added by the author at a later date); cf. another passage in the same 
spirit, ibid., II c. 35, fol. 38b22–24 = facs. ed., p. 210 (in ansa<a [MS. in shå<a] Llåhu 
f• l->umr [see below, p. 267]; v. G. Endress, “Averroes De Caelo,” Arabic Sciences and 
Philosophy, 5 (Cambridge, 1995): 9–49, esp. p. 45, and also Jamål-al-D•n al->Alaw•, 
al-Matn al-rushd• (Casablanca, 1987), 107.

2. Ibn Rushd, Tafs•r Må ba>d al-†ab•>a, XII c. 45, ed. M. Bouyges, Bibliotheca Arabica 
Scholasticorum, V–VII (Beyrouth, 1938–42), p. 1663.11–12, 1664.2–7; cf. English 
trans. by Ch. Genequand, Ibn Rushd’s Metaphysics (Leiden: Brill, 1984), 179.

3. “Nobody who is ignorant of geometry shall enter”—according to Hellenistic tradi-
tion, the inscription of the Platonic Academy at Athens; see, e.g., Elias, Comm. in Arist. 
Cat., ed. A. Busse (Berlin, 1900), 118.19.

4. Facs. of the first edition (Ioannis Keppleri Harmonices mundi libri V, Lincii Austriae: 
Plancus, 1619) in Johannes Kepler, Gesammelte Werke, Bd VI: Harmonice mundi, ed. 
Max Caspar (München: Beck, 1940), 13 (facsimile of the original title).

5. Proclus, In I Euclidis Elem., ed. G. Friedlein (Lipsiae: Teubner, 1873): prologus I, p. 
22, 17–20: pro;;ı de;; th;;n fusikh;;n qewrivan ta;; mevgista sumbavlletai, th;;n tw`n lovgwn 
eujtaxivan ajnafaivnousa, kaqæ h’n dedhmiouvrghtai to;; pa`n, kai;; ajnalogivan th;n panvta ta;; 
ejn tw`/ kovsmw/ sundhvsasan. English translation by Glenn R. Morrow, Proclus, A Com-
mentary on the First Book of Euclid’s Elements (Princeton, N.J.: Princeton University 
Press, 1970), 19.

6. See Albert Dihle, Philosophie als Lebenskunst, Rheinisch-Westfälische Akademie 
der Wissenschaften, Geisteswissenschaften, Vorträge, G 304 (Opladen: Westdeutscher 
Verlag,1990), 12, on the superior claim of the Platonists for the study of physical phi-
losophy—building upon mathematics, but transcending from the mathematicals, veri-
fied empirically, to the purely intelligible principles (Proclus, In Tim., 23.9 ff.); Pierre 
Hadot, Qu’est-ce que la philosophie antique? (Paris: Gallimard, 1995), 100 f.

7. See Ilsetraut Hadot, “Les aspects sociaux et institutionels des sciences et de la méde-
cine dans l’Antiquité tardive,” Antiquité tardive, 6 (Turnhout, 1998): 233–250; ead., 
Arts libéraux et philosophie dans la pensée antique (Paris: Etudes Augustiniennes, 
1984).

8. “Encyclopaedia,” that is, a general, “all-round” education encompassing the fields of 
knowledge preparing the way to higher learning.

9. I. Hadot, ibid., 242–244.

10. Óunayn b. Is˙åq, Risåla ilå >Al• b. Ya˙yå, ed. G. Bergsträsser: Óunain b. Is˙åq über 
die syrischen und arabischen Galenübersetzungen (Leipzig, 1925), Arabic text, 18; 
German trans., 15. The earliest translations of Aristotelian logic were commissioned to 



Gerhard Endress 162 Mathematics and Philosophy in Medieval Islam 163

scholars of the Christian churches, who had kept up the teaching of logic in Syriac, and 
of the isagogic tradition of the Alexandrian school; most prominent—but quite inde-
pendent from those of the astrologers and physicians—are the activities of the patriarch 
Timothy, working by commission for the caliph al-Mahd•; v. Henri Hugonnard-Roche, 
“Les traductions du grec au syriaque et du syriaque à l’arabe (à propos de l’Organon 
d’Aristote),” in Rencontre de cultures dans la philosophie médiévale: traductions et tra-
ducteurs de l’Antiquité tardive au XIVe siècle (Louvain-la-Neuve; Cassino, 1990), 133–
147; Sebastian Brock, “Two letters of the Patriarch Timothy from the late eighth century 
on translations from Greek,” Arabic Sciences and Philosophy, 9 (1999): 233–246.

11. Cf. Albrecht Dihle, “Philosophie—Fachwissenschaft—Allgemeinbildung,” in 
Aspects de la philosophie hellénistique, Entretiens sur l’Antiquité classique, 32 
(Vandœuvres-Genève: Fondation Hardt, 1986), 188–232.

12. ta;; maqhvmata kai;; oiJ ajriqmoiv, Pythag. fr. 14 A 17 Diels/Kranz, from Apollon, Mira-
bilia 6 Keller.

13. Philolaos, fr. 44 B 4.

14. ajriqmo;;n ei\nai th;;n oujsivan pavntwn, Arist. Metaph. A 5, 987a13–19. Cf. the sources 
presented by C. J. de Vogel, Greek philosophy: a collection of texts, vol. 1 (Leiden, 
³1963), 10ff., esp. p. 16f. (nos. 37–42).

15. Metaph. A.6, 987b10; e 8, 1073a18: ajriqmou;;ı ga;;r levgousi ta;;ı ijdevaı oij levgonteı 
ijdevaı.

16. Cf. the introduction of H. G. Zekl to his translation of the Analytica posteri- 
ora, Aristoteles, Erste Analytik; Zweite Analytik, in Organon/Aristoteles; Bd 3/4, 
griechisch-deutsch, Philosophische Bibliothek, Bd. 494/495 (Hamburg: Meiner, 1998), 
lviii–lxxxvi.

17. Resp. VII, 526a6: w|n dianohqh`nai movnon ejgcwrei.̀ 

18. Resp. VII, 526a1–3: prosanagkavzon aujth`/ th`/ nohvsei crh`sqai th;;n yuch;;n ejpæ 
aujth;;n th;;n ajlhvqeian.

19. Resp. VII, 527B7, 9–10: tou` ajei;; o[ntoı.

20. On mathematics in the history of Platonism, see Heinrich Dörrie and Matthias 
Baltes, Der Platonismus im 2. und 3. Jahrhundert nach Christus, Der Platonismus 
in der Antike, Bd 3 (Stuttgart-Bad Cannstatt: Frommann-Holzboog, 1993), 68–71, 
266–279.

21. Thomas L. Heath, A history of Greek mathematics, I, 98; Dörrie and Baltes, op. 
cit., 267f.

22. On the Hellenistic reading and transmission of Nicomachus, v. Leendert Gerrit 
Westerink, “Deux commentaires sur Nicomaque: Asclépius et Jean Philopon, Revue 
des études grecques, 77 (1964): 526–535; Étienne Evrard, Jean Philopon, son «Com-
mentaire sur Nicomaque» et ses rapports avec Ammonius,” ibid. 78 (1965): 592–598; 
Leonardo Tarån [ed.], Asclepius of Tralles, Commentary to Nicomachus’ Introduction 
to Arithmetic (Philadelphia: American Philosophical Society, 1969). A close contempo-



Gerhard Endress 162 Mathematics and Philosophy in Medieval Islam 163

rary was Theon of Smyrna, who wrote an “Exposition of mathematical matters useful 
for the study of Plato” (ed. E. Hiller, Leipzig 1878).

23. Dominic J. O’Meara, Pythagoras Revisited: mathematics and philosophy in late 
Antiquity (Oxford: Clarendon Press, 1989), 212.

24. Ibid., 166–169; see also Ian Mueller, “Mathematics and philosophy in Proclus’ 
commentary on book I of Euclid’s Elements,” in Proclus: lecteur et interprète des 
anciens, Actes du colloque international du CNRS (2–4 October 1985) publiés par Jean 
Pépin et H. D. Saffrey (Paris: CNRS, 1987), 305–318.

25. L. G. Westerink, “Philosophy and medicine in Late Antiquity,” Janus, 51 (1964): 
169–177; id., “Ein astrologisches Kolleg aus dem Jahre 564,” Byzantinische Zeitschrift, 
64 (1971): 6–21.

26. Cf. G. Endress, “Die wissenschaftliche Literatur,” in Grundriss der Arabischen 
Philologie, 2 (Wiesbaden: Reichert, 1987), 407–409.

27. The textual evidence does not support the thesis proposed by Michel Tardieu that 
Simplicius, on his return from the court of Khosrow An¥sh•rwån, retired to Óarrån, 
and that the Íåbi<at al-Y¥nåniyy•n mentioned by al-Mas>¥d• should have kept up a 
Platonic Academy until the 10th century; v. Tardieu, “Íåbiens coraniques et «Íabiens» 
de Óarran,” Journal asiatique, 274 (1986): 1–44; idem, “Simplicius et les calendriers 
de Óarrån d’après les sources arabes et le commentaire de Simplicius à la Physique 
d’Aristote,” in Simplicius: sa vie, son oeuvre, sa survie (Berlin: de Gruyter, 1987), 40–
51; cf. Dimitri Gutas, “Plato’s Symposion in the Arabic tradition,” Oriens, 31 (1988): 
36–60 (p. 44); Concetta Luna, review of: Rainer Thiel, Simplikios und das Ende der 
neuplatonischen Schule in Athen (Stuttgart: Steiner, 1999), in: Mnemosyne, ser. 4, vol. 
54 (Leiden, 2002): 482–504.

28. Through his pupil al-Sarakhs•; v. Franz Rosenthal, A˙mad b. a†-ˇayyib as-Sara∆s• 
(New Haven: American Oriental Society, 1943), 41–51.

29. See G. Endress, “Al-Kind• über die Wiedererinnerung der Seele: arabischer Pla-
tonismus und die Legitimation der Wissenschaften im Islam,” Oriens, 34 (Leiden, 
1994): 174–221.

30. Ed., with a Turkish translation, by Aydın Sayılı, “Sâbit ibn Kurra’nin Pitagor teor-
emini tamimi,” Belleten, 22 (Ankara: Türk Tarih Kurumu, 1958): 526–549.

31. Ibid., p. 541.

32. Qutotations are found in the Arabic scholia of al-Nayr•z•, who in his turn relied 
not on the full commentary of Proclus—whom he does not mention by name—but 
rather on the scholia found in his manuscript, containing explicit references to Heron 
and —transmitting the doctrine of Proclus—Simplicius; v. Rüdiger Arnzen, Abu’l-
>Abbås an-Nayr•z•s Exzerpte aus (Ps.-?) Simplicius’ Kommentar zu den Definitionen, 
Postulaten und Axiomen in Euclids Elementa I, eingeleitet, ediert und mit arabischen 
und lateinischen Glossaren versehen (Köln, Essen, 2002), xxvi–xxxvii and Index nomi-
num. These concern specific problems, but convey scarcely any traces of the philo-
sophic prolegomena. Proclus’ Elementatio physica was also known; a selection of the 



Gerhard Endress 164 Mathematics and Philosophy in Medieval Islam 165

propositions, in Arabic translation, is quoted in a treatise of Ya˙yå ibn >Ad• on the refu-
tation of atomism; v. G. Endress, “Ya˙yå ibn >Ad•’s Critique of Atomism: three treatises 
on the indivisible part, ed. with introduction and notes,” Zeitschrift für Geschichte der 
Arabisch-Islamischen Wissenschaften, 1 (Frankfurt a. M., 1984): 155–179.

33. Translated from the Syriac by the Nestorian Óab•b (>Abdyash¥>) ibn Bihr•z; v. 
M. Steinschneider, Die hebräischen Übersetzungen des Mittelalters und die Juden 
als Dolmetscher (Berlin, 1893; repr. Graz: Akad. Druck- und Verlagsanstalt, 1956), 
§ 320, p. 516–519; this version, which is no longer extant, was replaced by that of 
Thåbit ibn Qurra (d. 288/901), ed. W. Kutsch: ‰åbit b. Qurras arabische Überset-
zung der ∆Ariqmhtikh;; Eijsagwghv des Nikomachus von Gerasa (Beyrouth: Imprimerie 
Catholique, 1959). A Hebrew commentary-paraphrase, based on al-Kind•’s redaction, is 
extant in manuscript (v. Steinschneider, loc. cit.), and is being prepared for publication 
by Gad Freudenthal.

34. Kitåb al-M¥s•q• al-kab•r, v. Ibn al-Nad•m, al-Fihrist, ed. Flügel, 269.23 (“wa-li-
hådhå l-kitåbi mukhtaßaråt”).

35. al-Kind•, K. ilå l-Mu>taßim bi-Llåh f• l-falsafa al-¥lå, ed. M. >Abd-al-Håd• Ab¥ R•da 
(Cairo, 1950–53), 1:97–162, p. 103.1; Risåla f• kammiyyat kutub Aris†å†ål•s, ed. M. 
Guidi, R. Walzer, Studi su al-Kind• I: Uno scritto introduttivo allo studio di Aristotele 
(Roma: Accademia Nazionale dei Lincei, 1940),§ 6, p. 393 = ed. Ab¥ R•da, Raså<il, 
372f.

36. Ab¥ Ma>shar, K. al-Madkhal al-kab•r ilå >ilm a˙kåm al-nuj¥m: Liber introductorius 
maior ad scientiam iudiciorum astrorum, ed. Richard Lemay (Napoli: Istituto Universi-
tario Orientale, 1995), 1:23–32 (introd.).

37. On the position of the mathematicals, esp. on the doctrine of the three kinds of 
being, see Heinrich Dörrie and Matthias Baltes, Die philosophische Lehre des Pla-
tonismus: einige grundlegende Axiome; platonische Physik (im antiken Verständnis), I, 
Der Platonismus in der Antike, Bd 4 (Stuttgart—Bad Cannstatt: Frommann-Holzboog, 
1996), 48–66 (texts), 266–90 (commentary); Philip Merlan, From Platonism to Neopla-
tonism (Den Haag 1953; ²1960), 220–25; G. Endress, “al-Kind• über die Wiedererin-
nerung” [supra, n. 29], 182.

38. al-Kind•, Risåla f• kammiyyat kutub Aris†å†ål•s wa-må yu˙†åj ilayhi f• ta˙ß•l al-
falsafa, edd. M. Guidi and R. Walzer: Uno scritto introduttivo allo studio di Aristotele, 
Studi su al-Kind• I (Roma: Accademia Nazionale dei Lincei, 1940); v. Christel Hein, 
Definition und Einteilung der Philosophie: von der spätantiken Einleitungsliteratur zur 
arabischen Enzyklopädie, Europäische Hochschulschriften, 177 (Frankfurt a.M. [etc.]: 
Lang, 1985), 174–177.

39. Cf. Ilsetraut Hadot, “La division néoplatonicienne des écrits d’Aristote,” in Simpli-
cius, Commentaire aux Catégories d’Aristote, trad. commentée, (Leiden: Brill, 1990), 
fasc. 1:63–93, p. 91.

40. Op. cit., p. 391, followed by a detailed explanation of the quadrivium, p. 394. See 
the references to the Greek commentators given by R. Walzer, ibid., p. 377.

41. Ibn al-Nad•m, al-Fihrist, ed. Flügel, 255.28.



Gerhard Endress 164 Mathematics and Philosophy in Medieval Islam 165

42. Ed. by Zakariyyå Y¥suf, Mu<allafåt al-Kind• al-m¥s•qiyya (Baghdåd: al-Majma> al-
>Ilm• al->Iråq•, 1962), 67–92; cf. Amnon Shiloah, The theory of music in Arabic writings 
(c. 900–1900) (München: Henle, 1979), 254f.

43. al-Kind•, al-Mußawwitåt al-watariyya, l. c., p. 70; on the classification of mathe-
matics, see C. Hein, op. cit. [above, n. 38], p. 182ff.

44. al-Mußawwitåt, 71.10–20.

45. Ibid. 72.

46. Ibid. 77.5–10.

47. Ibid. 78.10–79.20.

48. Third maqåla, p. 85ff.: f• mushåkalat al-awtår.

49. Ed., with introduction and French translation, by Léon Gauthier, Antécédents gréco-
arabes de la psychophysique (Beyrouth: Imprimerie catholique, 1938); see also M. Ull-
mann, Die Medizin im Islam (Leiden: Brill, 1970), 302, with further references.

50. Tzvi Langermann, “Another Andalusian revolt? Ibn Rushd’s critique of al-Kind•’s 
pharmacological computus,” infra, chapter 12.

51. Ibn Rushd, al-Kulliyyåt f• l-†ibb, edd. Sa>•d Shaybån, >Ammår al-ˇålib• (Cairo: al-
Majlis al-A>lå li-l-Thaqåfa, 1989), 309–313, quotation from p. 312.8; corresponding 
to ed. J. M. Fórneas Besteiro, C. Álvarez de Morales (Madrid: Consejo Superiór de 
Investigaciónes Científicas; Granada: Escuela des Estudios Árabes, 1987), 389–392 
(391.–6).

52. A detailed exposition was given by Paul Kraus, Jåbir ibn Óayyån: contribution 
à l’histoire des idées scientifiques dans l’Islam; t. 2: Jåbir et la science grecque (Le 
Caire, 1942; repr. Paris: Les Belles Lettres, 1986), ch. V, “La théorie de la balance,” 
187–303.

53. For these “orders” (tavxeiı) and “degrees” (ajpostavseiı) cf. Galen, De comp. med. 
per genera, II.1 (Opera, ed. Kuehn, vol. 13: 464f.); III.2 (p. 572f.); De simpl. med., V. 
27 (vol. 11: 786–788); v. quotations in Kraus, Jåbir, 189, nn. 2–4.

54. See the excerpt from K. al-Ba˙th, edited by Paul Kraus, Jåbir ibn Óayyån: textes 
choisis (Paris, Le Caire: IFAO, 1935), 510–513, and the relevant passage in Kraus, 
Jåbir, II:194f.

55. Cf. Kraus, op. cit., 20ff., adding abundant references to Greek philosophical and 
mathematical literature, and also to the use of arithmetical symbolism in Christian 
Greek authors.

56. Or Kitåb Ikhwån al-Íafå<: ed. Friedrich Dieterici, Die Abhandlungen der Ichwan es-
Safa (Leipzig, 1883); ed. Khayr-al-D•n al-Zirikl• (Cairo, 1928); repr. with an introd. by 
Bu†rus al-Bustån• (Bayr¥t: Dår Íådir, 1957), and other editions; cf. Amnon Shiloah, The 
theory of music in Arabic writings (c. 900–1900) (München: Henle, 1979), 230–233.

57. Explicitly: mithlamå kåna yaf>aluh¥ l-˙ukamå< al-F•thågh¥riyy¥n, I:48.11 (Risåla 
I, 1).



Gerhard Endress 166 Mathematics and Philosophy in Medieval Islam 167

58. Nicomachus Gerasenus, Introductio arithmetica, ed. Hoche (Lipsiae: Teubner, 
1866), 1–2, referring to Pythagoras; cf. Martin Luther D’Ooge (trans.), Nicomachus of 
Gerasa, Introduction to Arithmetic (New York: Macmillan, 1926), 181.

59. Raså<il, Preface, I:21.10–22.2. Cf. Nicomachus, Introd. Arithm., p. 1 (trans. D’Ooge, 
p. 182): “This wisdom he [sc. Pythagoras] defined as the knowledge, or science, of the 
truth in real things, conceiving science to be a steadfast and firm apprehension of the 
underlying substance, and real things to be those which continue uniformly and the 
same in the universe [etc.];” of the four mathematical sciences, one should start with 
the one “which naturally exists before them all, is superior and takes the place of origin 
and root;” “this is arithmetic, not solely bcause we said that it existed before all the 
others in the mind of the creating God like some universal and exemplary plan, relying 
upon which as a design and archetypal example the creator of the universe sets in order 
his material creations and makes them attain to their proper ends, but also because it is 
naturally prior in birth, inasmuch as it abolishes other sciences with itself ” (p. 9; trans. 
D’Ooge, p. 187).

60. The Epistle on Music of the Ikhwån al-Íafå< (Baghdad, 10th century), transl. Amnon 
Shiloah, Documentation and Studies: Publications of the Department of Musicology 
and the Chaim Rosenberg School of Jewish Studies, Tel Aviv University (Tel-Aviv: Tel 
Aviv University, Faculty of Fine Arts, School of Jewish Studies, 1978). References to 
the Arabic text are to the edition printed at Beirut, Dår Bayr¥t & Dår Íådir, 1957.

61. The Hellenistic antecedents of this attitude are found—apart from Plato himself and 
older Pythagoreanism—in the ps.-Platonic Epinomis, in the Neoplatonic commentaries 
on Euclid’s Elementa and on Nicomachus—Iamblichus, Proclus, Philoponus—and in 
Porphyry’s In Ptolem. Harm. (quoting, like Nicomachus, the treatise On Harmony by 
Archytas of Tarentum); cf. the documentation by F. E. Robbins and L. Ch. Karpinski in 
M. L. D’Ooge [trans.], Nicomachus of Gerasa, Introduction to Arithmetic [supra, n. 58].

62. Shiloah, The Epistle on Music, introd., 7.

63. Raså<il, I:237.2–6; tr. Shiloah, p. 68 (aphorism 18); cf. also pp. 234–39 = Shiloah, 
66–9, aphorisms no. 7, 9, 11, 20, 21.

64. A detailed bibliography has been presented by Everett K. Rowson in his analysis 
of the teaching tradition leading from al-Kind• to the later heirs of Balkh•’s school: 
A Muslim philosopher on the soul and its fate: al->Åmir•’s Kitåb al-Amad >alå l-abad 
(New Haven, Conn.: AOS, 1988), 1–19; see also the same, “The philosopher as litté-
rateur,” Zeitschrift für Geschichte der Arabisch-Islamischen Wissenschaften 6 (1990): 
40–92, esp. pp. 1–7 on Ab¥ Zayd al-Balkh•.

65. Abu ’l-Óasan M. b. Y¥suf al->Åmir•, K. al-I>låm bi-manåqib al-Islåm, ed. A. 
>Abdal˙am•d Ghuråb (Cairo: Dår al-Kitåb al->Arab•, 1967).

66. Manåqib, 88.5.

67. Manåqib, 90.3, 90.8–10.

68. The epithet al-mu>allim al-awwal does not seem to occur before al-Fåråb•, but 
al-Kind• already calls him mubarriz al-Y¥nåniyy•n f• l-falsafa (al-Falsafa al-¥lå, ed. 



Gerhard Endress 166 Mathematics and Philosophy in Medieval Islam 167

Ab¥ R•da, 102f.) For the stages of Arabic Aristotelianism, cf. G. Endress, “L’Aristote 
arabe: réception, autorité et transformation du Premier Maître,” Medioevo, 24 (Padova, 
1998): 1–42.

69. ejpisthvmh ejpisthmw`n, >ilm al->ul¥m; v. Hein, Definition, p. 39.

70. An. post., I.22, 83a33–34; cf. J. Barnes [trans.], Aristotle’s Posterior Analytics 
(Oxford: Clarendon Press, 1975), 34, 169.

71. Ibid., I.1, 71a1–4.

72. Cf. Kurt von Fritz, “Die ajrcaiv in der griechischen Mathematik,” Archiv für Begriffs-
geschichte 1 (Bonn, 1955): 13–103, repr. in von Fritz, Grundprobleme der Geschichte 
der antiken Wissenschaft (Berlin, 1971), Árpád Szabó, “The transformation of math-
ematics into deductive science and the beginnings of its foundation on definitions and 
axioms,” Scripta Mathematica, 27 (1964), 1:27–48, 2:113–39 (quotation from p. 137).

73. Walter Leszl, “Mathematics, axiomatization, and the hypotheses,” in Aristotle on 
science: the «Posterior Analytics», ed. by Enrico Berti, Studia Aristotelica, 9 (Padova: 
Antenore, 1983), 270–328 (v. conclusions pp. 304f., 313f., 326f.); Wolfgang Kullmann, 
“Die Funktion der mathematischen Beispiele in Aristoteles’ Analytica posteriora,” 
ibid., 245–70 (conclusions p. 267f.).

74. Edward Booth, Aristotelian aporetic ontology in Islamic and Christian thinkers 
(Cambridge [etc.]: Cambridge University Press, 1983), 2.

75. J. Barnes, Aristotle’s Posterior Analytics, xi.

76. Trans. Thomas Heath, Mathematics in Aristotle (Oxford: Oxford University Press, 
1949), 8f.

77. Aristotle, Phys. II.2, 193b22–194b15 (194a8: ta;; fusikwvtera tw`n maqhmavtwn).

78. Ibid. 193b34: cwrista;; ga;r th`/ nohvsei kinhvsewı.

79. al-Fåråb•, K. al-Jam> bayna ra<yay al-˙ak•mayn, ed. Dieterici/Nådir (Beirut 1960), 
97.19–98.8.

80. Cf. G. Endress, “The defense of reason: the plea for philosophy in the religious 
community,” Zeitschrift für Geschichte der Arabisch-Islamischen Wissenschaften, 6 
(Frankfurt a. M., 1990): 1–49 (esp. 16–23).

81. al-Fåråb•, K. al-Burhån, ed. Måjid Fakhr•, al-Man†iq >ind al-Fåråb• (Bayr¥t: Dår 
al-Mashriq, 1987), 65.18–22.

82. Ibid. 70.12–14.

83. al-Fåråb•, K. al-Burhån, 68.ult.–70.11.

84. al-Fåråb•, I˙ßå< al->ul¥m, ed. >Uthmån Am•n (Cairo, ²1949), 74.

85. But v. Sarah Stroumsa, “Al-Fåråb• and Maimonides on medicine as a science,” 
Arabic Sciences and Philosophy, 3 (1993): 235–249.

86. I˙ßå<, 77–78.



Gerhard Endress 168 Mathematics and Philosophy in Medieval Islam 169

87. Ibid., 79–83, esp. 80.1–13.

88. This is analyzed on the basis of al-Fåråb•’s I˙ßå<, and interpreted in the light of 
related texts from the philosophical and the scientific traditions, in the enlightening 
contribution to the present volume by Elaheh Kheirandish, “The many «aspects» of 
Appearances: Arabic optics to 950 A.D.,” supra, pp. 53–81. I owe to her article the refer-
ences given below, notes 90–91.

89. v. al-Fåråb•, K. al-Burhån, 25f. Cf. Aristotle, An. Post., I.2.71b18: ajpovdeixin de; 
levgw sullogismo;n ejpisthmonikovn.

90. An. Post. I.13.78a30ff.; Probl. Phys. XV.6.911b19–34.—The Arabic version of 
Probl. Phys. XV.6, referred to in the original Greek by E. Kheirandish (infra, p. 56, text 
P), is now available in the edition of L. S. Filius, The Problemata Physica attributed to 
Aristotle: the Arabic version of Óunain ibn Is˙åq and the Hebrew version of Moses ibn 
Tibbon, Aristoteles Semitico-Latinus, 11 (Leiden: Brill, 1999), 658/659.

91. Quoted by E. Kheirandish, infra, 59 (text L), ed. Roshdi Rashed, Œuvres phi-
losophiques et scientifiques d’al-Kind•, vol. 1 (Leiden: Brill, 1997), appendice II: 
“La catoptrique de Qus†å ibn L¥qå,” 572/573. The addressee is the Abbasid regent 
al-Muwaffaq (regn. 843–91).

92. Ibn S•nå, Tis> raså<il f• l-˙ikma wa-l-†ab•>iyyåt li-l-shaykh al-ra<•s, ed. Óasan >Åß• 
(Beir¥t: Dår Qåbis, 1986) [a reprinting of one of several early Cairo editions of the 
“nine epistles”], no. 5, 83–94, on the mathematical science: pp. 84 and 89.

93. William E. Gohlmann, The life of Ibn Sina, Studies in Islamic Philosophy and 
Science (Albany: The University of New York Press, 1974), 20–27; Dimitri Gutas, 
Avicenna and the Aristotelian tradition, Islamic Philosophy and Theology, 4 (Leiden: 
Brill, 1988), 26.

94. Ibn S•nå, al-Shifå<, al-Ilåhiyyåt, ed. [George She˙åta] Qanawåt• [Anawati], Sa>•d 
Zåyid (Cairo: al-Hay<a al->åmma li-shu<¥n al-ma†åbi> al-am•riyya, 1960), 10f.; French 
translation by Georges C. Anawati: Avicenne, La Métaphysique du Shifå<, Etudes 
musulmanes, 21 (Paris: Vrin, 1978), 91ff.

95. al-Ilåhiyyåt, 10.10–14.

96. Ibid., 11.12–12.2.

97. Ibid., 21–24; cf. Anawati, 100–102.

98. Ibid., 24.1–2.

99. ed. Anawati and Zåyid, 303–324.

100. Quoted from the translation of A. I. Sabra in The Optics of Ibn al-Haytham, books 
I–III (London: Warburg Institute, 1989), II: Commentary, 3; cf. also Shlomo Pines, “Ibn 
al-Haytham’s critique of Ptolemy,” in Proceedings of the Xth International Congress of 
the History of Science (Paris, 1964), 547–50 = Studies in Arabic versions of Greek texts 
and in mediaeval science, The Collected works of Shlomo Pines, vol. 2 (Jerusalem: 
Magnes Press; Leiden: Brill, 1986), 436–39.



Gerhard Endress 168 Mathematics and Philosophy in Medieval Islam 169

101. Fom the introduction to Ibn S•nå’s Man†iq al-mashriqiyy•n, translated by Dimitri 
Gutas, Avicenna and the Aristotelian tradition (Leiden [etc.]: Brill, 1988), 44f.

102. al-Óasan Ibn al-Haytham, al-Shuk¥k >alå Ba†lamy¥s, edd. >Abd-al-Óam•d Íabra, 
Nab•l al-Shahbån• (Cairo: Dår al-Kutub, 1971), 19.12, 37.6.

103. Ibn al-Haytham as quoted from his autobiography by Ibn Ab• Ußaybi>a, >Uy¥n 
al-anbå< f• †abaqåt al-a†ibbå<, ed. A. Müller (Cairo, Königsberg, 1884), 2:93.4; cf. 
Matthias Schramm, Ibn al-Haythams Weg zur Physik, Boethius, 1 (Wiesbaden: Steiner, 
1963), 141, cf. 285.

104. Ibn al-Haytham, On the Configuration of the World, edition, translation, and com-
mentary by Y. Tzvi Langermann (New York: Garland; 1990).

105. Cf. M. Schramm, Ibn al-Haytham, 136f.

106. M. Schramm, Ibn al-Haytham, 136–138.

107. Ibn al-Haytham, Kitåb f• ˙all shuk¥k kitåb Uql•dis f• l-uß¥l, facsimile ed. by F. 
Sezgin, Ibn al-Haytham, On the Resolution of Doubts in Euclid’s Elements and Inter-
pretation of Its Special Meanings (Frankfurt a.M., 1985), 4.4–7. Cf. Proclus, In I Eucl., 
31.2–3, 31.22–32.2, trans. Morrow, 26: “Every form of knowledge which apprehends 
the logos, or cause, of the thing it knows is a science. . . . For genuine science is the 
one, the science by which we are able to know all things, the science from which come 
the principles of all other sciences, some immediately and some at further remove.” 
And cf. Aristotle, Phys. II.3.195b21; Metaph. H.4.1044b1–2: the physicist looks for the 
proximate, most pertinent cause.

108. Ibn al-Haytham, K. al-ManåΩir, al-maqålåt 1–3, ed. >Abdal˙am•d Íabra (Kuwait, 
1983), [6], p. 62.7–9: wa-nabtadi<u f• l-ba˙thi bi-stiqrå<i l-mawj¥dåti wa-taßaffu˙i 
a˙wåli l-mubßaråti, wa-numayyizu khawåßßa l-juz<iyyåti wa-naltaqi†u bi-stiqrå<i må 
yakhußßu l-baßara f• ˙åli l-ibßår, etc.; cf. Sabra, The Optics of Ibn al-Haytham, I 
(Translation): quoted by Sabra in this volume, p. 85.

109. Cf. A. I. Sabra, loc. cit., II, 12f.: “inspection or examination of particulars,” refer-
ring to al-Fåråb•’s al-AlfåΩ al-musta>mala f• l-man†iq (ed. M. Mahd•, 93) for the use of 
istiqrå< in conjunction with taßaffu˙ “to review, to survey.”

110. Joep Lameer, Al-Fåråb• and Aristotelian syllogistics: Greek theory and Islamic 
practice, Islamic Philosophy, Theology and Science, 20 (Leiden [etc.]: Brill, 1994), 
144—confirming A. I. Sabra’s analysis of the terminology. It is true that this under-
standing may be claimed for the Aristotelian epagôgê as well.

111. M. Schramm, Ibn al-Haytham, 260–264.

112. Ibid., 285–289.

113. Ibn al-Haytham, al-ManåΩir [supra, n.108], book II, section 3, [200–232] 
pp. 307– 316; v. A. I. Sabra, The Optics of Ibn al-Haytham [supra, n. 100], I (trans.), 
pp. 200–206; II (commentary), pp. 97–201.

114. Swv/zein ta; fainovmena, Simplicius, In De Caelo comm., ed. Heiberg, 488.18–24, 



Gerhard Endress 170 Mathematics and Philosophy in Medieval Islam 171

492.25ff.; Proclus, Hypotyposis astronomicarum positionum, ed. C. Manitius (Leipzig, 
1909), 5.10; cf. Harold Cherniss, “The philosophical economy of the theory of ideas,” 
American Journal of Philology, 57 (1936): 445–56 = Cherniss, Selected papers (Leiden, 
1977), 121–132; Shmuel Sambursky, The physical world of the Greeks (London, 1956), 
59; idem, The physical world of late Antiquity (London, 1962); Jürgen Mittelstrass, Die 
Rettung der Phänomene: Ursprung und Geschichte eines antiken Forschungsprinzips 
(Berlin, 1962).

115. Willy Hartner, “Mediæval views on cosmic dimensions and Ptolemy’s Kitåb 
al-Mansh¥råt,” in Mélanges Alexandre Koyré, 1 (Paris: Hermann, 1964), 254–282 = 
W. Hartner Oriens—Occidens (Hildesheim: Olms, 1968), 319–348; Bernard R. Gold-
stein, The Arabic version of Ptolemy’s Planetary Hypotheses, Transactions of the 
American Philosophical Society, new series, vol. 57.4 (Philadelphia, 1967).

116. Willy Hartner, “Falak,” in Encyclopædia of Islam, new ed., 2 (1963): 761–763.

117. The position of Sosigenes, the teacher of Alexander of Aphrodisias, was analyzed, 
as an introduction to his study of Ibn al-Haytham’s theory, by M. Schramm, Ibn al-
Haytham, 15–63.

118. Alain Philippe Segonds, “Proclus: astronomie et philosophie,” in Proclus, lecteur 
et interprète des anciens [as quoted supra, note 24], 317–334; quotation p. 332 from 
Proclus, Hypotyposis astronomicarum positionum, ed. C. Manitius (Leipzig: Teubner, 
1909), 236. See also W. Hartner, “Mediæval views,” quoted supra, n. 115; Lucas Sior-
vanes, Proclus: neo-Platonic philosophy and science (Edinburgh: Edinburgh Univer-
sity Press, 1996), 266.

119. Ibn al-Haytham, Shuk¥k [supra, n. 102], 16.2

120. Ibid., 33.2–4.

121. Ibid., 34.3–8.

122. Ibid. 37.14–15, cf. also 33.5, 63.14ff.; the reference to the Almagest, book IX.2, 
is found in Claudii Ptolemaei opera quae exstant omnia, vol. 1: Syntaxis mathematica, 
ed. J. L. Heiberg (Lipsiae: Teubner, 1898–1903), 2:211.22–24 (katacrhvsesqaiv tini 
para; to;n lovgon); Ptolemy’s Almagest, trans. and annotated by G. J. Toomer (London: 
Duckworth, 1984), 422; Régis Morelon, ‘La version arabe du Livre des Hypothèses de 
Ptolémée,’ Institut Dominicain d’Études Orientales du Caire: Mélanges (MIDEO), 21 
(1993): 7–85 [Bk I].

123. Ibid. 38.2ff.

124. Ibid. 41.ult.–42.8.

125. See the detailed and penetrating discussion of these passages by A. I. Sabra, “Con-
figuring the universe: aporetic, problem solving, and kinematic modeling as themes 
of Arabic astronomy,” Perspectives on Science, 6:1998 (Cambridge, MA: MIT, 1999): 
288–330, esp. pp. 298–305: “Ibn al-Haytham and the aporetic argument: Ptolemy’s 
dilemma,” preceded by a review of Ibn Haytham’s Maqåla f• Hay<at al->ålam, ed. and 
trans. by Y. Tzvi Langermann, Ibn al-Haytham’s On the Configuration of the World, 
Harvard Dissertations in the History of Science (New York: Garland, 1990).



Gerhard Endress 170 Mathematics and Philosophy in Medieval Islam 171

126. A. I. Sabra, “Configuring the universe” [see preceding note], 304.

127. M. Schramm, Ibn al-Haytham, 143–46.

128. Ibn al-Haytham, Shuk¥k, 38.5.

129. Ibn Båjja, Kalåm ba>atha bih• li-Ab• Ja>far Y¥suf ibn Óasdåy, in Raså<il falsafiy- 
ya li-Ibn Båjja, ed. Jamål-al-D•n al->Alaw• (Beirut, Casablanca, 1983), 78. On the 
5th/11th century Andalusian astronomer (Ibn) al-Zarqålluh, v. J. Vernet in Dictionary of 
Scientific Biography, XIV:592 s.n.

130. Comm. med. Meteor., b. III <latine, ex hebraico Kalonymi> (Venetiis: apud Iunc-
tas, 1562), t. IV: fol. 448v L. The Latin differs from the Arabic, Ibn Rushd, Talkh•ß al-
Åthår al->ulwiyya, ed. Jamål-al-D•n al->Alaw• (Bayr¥t: Dår al-Gharb al-Islåm•, 1994), p. 
141.10–12, but this is corrupted, being in evident contradiction to p. 145.1–10 (cf. the 
comments of the editor, ibid., p. 144, note 4, and p. 145, note 4).

131. This was pointed out by A. I. Sabra, The Optics of Ibn al-Haytham, books I-III, 
2: Commentary (London: Warburg Institute, 1989), p. 6, quoting the mediæval Latin 
translation of Averroes’ commentary. The reference in Ibn al-Haytham, as quoted by 
Sabra, ibid., p. 4, is his treatise On the Rainbow and the Halo (completed in Rajab, 
419/1028), as referred to by Kamål-al-D•n al-Fåris•, Tanq•˙ al-ManåΩir (Óaydaråbåd: 
Då<irat al-Ma>årif al->Uthmåniyya, 1347–48/1928–30), II, 258–279. The text identified 
by the editor, Jamål-al-D•n al->Alaw•, as being a possible source of Ibn Rushd’s refer-
ence (Maqålat al-Óasan b. al-Óasan Ibn al-Haytham f• l-A®ar al-Ωåhir f• wajh al-qamar, 
ed. >Abd-al-Óam•d Íabra, Journal of the History of Arabic Science, 1 [Aleppo, 1977]: 
5–19) treats a different topic, and does not contain specific statements on method.

132. Translated by A. I. Sabra, op. cit., 4, from the quotation found in Kamål-al-D•n 
al-Fåris•, Tanq•˙ al-ManåΩir, ed. Muß†afå Óijåz•, II, p. 259, 7–8.

133. Ibn Rushd, Talkh•ß al-Åthår al->ulwiyya, ed. >Alaw•, p. 145.1–10 (l. 4–5: wa-laysa 
˙ålu >ilmi l-manåΩiri ma>a [sic leg. pro al-munåΩir•n] hådhå l->ilmi f• i>†å<i hå∂ihi l-
asbåbi ka-˙åli >ilmi l-manåΩiri ma>a >ilmi l-handasa). For Ibn al-Haytham’s conception 
of the causes determined in mathematical demonstrations, cf. the text quoted above, 
note 107).

134. Talkh•ß al-Åthår al->ulwiyya, p. 144.

135. Talkh•ß al-Åthår al->ulwiyya, p. 145.ult.–146.6.

136. V. supra, n. 78.

137. Epitome of Plato’s Republic and its Scientific Arguments [written, perhaps, in the 
same period as the Middle Commentary on the Nicomachean Ethics, finished in 572 
H.], Hebrew text ed. Erwin I. J. Rosenthal, Averroes’ Commentary on Plato’s Republic, 
Cambridge Oriental Publications, 1 (Cambridge: Cambridge University Press, 1956; 
repr. 1966, 1969), b. II, ch. XV: 75.16–35; trans. Ralph Lerner, Averroes on Plato’s 
“Republic” (Ithaca: Cornell, 1974), 96f.

138. Cf. Aristotle, Phys. II.2, quoted supra, note 77. On the different “causes” deter-
mined in physics and astronomy, see the passage from Averroes’ commentary on De 
Caelo, quoted infra, n. 161.



Gerhard Endress 172 Mathematics and Philosophy in Medieval Islam 173

139. al-Bi†r¥j•, De motibus celorum: critical edition of the Latin translation by Michael 
Scot, ed. by Francis J. Carmody (Berkeley and Los Angeles, 1952); id.: On the Prin-
ciples of Astronomy, an ed. of the Arabic and Hebrew versions with translation, analysis, 
and an Arabic-Hebrew-English glossary by Bernard R. Goldstein (New Haven, 1971). 
A superb analysis of the Andalusian “revolt” against Ptolemy—or should we say “resto-
ration” of Aristotle?—in planetary theory has been given by >Abdal˙am•d I. Íabra in his 
article “The Andalusian revolt against Ptolemaic astronomy: Averroes and al-Bi†r¥j•,” 
in Transformation and Tradition in the Sciences: essays in honor of I. Bernard Cohen, 
ed. by E. Mendelsohn (Cambridge [etc.]: Cambridge University Press, 1984), 133–153. 
The following synopsis of Ibn Rushd’s positions is expounded in more detail in my 
article “Averroes De Caelo: Ibn Rushd’s cosmology in his commentaries on Aristotle’s 
On the Heavens,” Arabic Sciences and Philosophy, 5 (1995): 1–41.

140. Kalåm li-Ab• Bakr ibn Ya˙yå f• l-hay<a, MS. Berlin: Staatsbibliothek, Wetzstein, 
87 (Ahlwardt, Verzeichniß, no. 5060; now at Cracow, Biblioteka Jagiellońska), fol. 
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I  Introduction

Ab¥ Sahl W•jan ibn Rustam al-K¥h•1 was a mathematician from ˇabaristan2 
who flourished in the second half of the tenth century C.E. and whose work 
was well-known among the mathematicians of his age working in the B¥yid 
domains. He had as patrons at least three kings of the B¥yid Dynasty: >A∂ud 
al-Dawlah, Íamßåm al-Dawlah, and Sharaf al-Dawlah, whose combined reigns 
cover the period 962–989. In the times immediately following his, Ibn al-Hay-
tham and al-B•r¥n• knew of several of his works, and >Umar al-Khayyåm• cites 
him as one of the “distinguished mathematicians of Iraq.”3 Later, some of his 
works were studied by Mu˙ammad ibn Sir†åq in the first half of the fourteenth 
century, and the eighteenth century Egyptian scholar Muß†afå Íidq• not only 
copied several of his works but was sufficiently interested in his treatise on the 
volume of the paraboloid to make a shorter version of it. 

Al-K¥h• had, however, not only undoubted ability but the good fortune to 
be a geometer in a century that was one of the most active periods of geometri-
cal research in medieval Islam. The tenth century included most of the working 
lives of geometers such as Ibråh•m ibn Sinån (d. 946) A˙mad al-Íaghån•, Ab¥ 
Sa>d al->Alå< ibn Sahl, A˙mad al-Sijz• (fl. 970), Ab¥ Naßr ibn >Iråq and Abu’l-
Wafå< al-B¥zjån•, geometers whose works variously cite,4 complement, and 
contrast with those of Ab¥ Sahl. (We know that al-K¥h• was in personal contact 
with at least three of these, who worked with him on observations of the sun, 
which he supervised, during the reign of Sharaf al-Dawlah in 988. And he was 
in correspondence with at least one more.) In view of this rich intellectual 
working environment we are fortunate in having available not only some thirty-
two works by the great B¥yid geometer, as well as excerpts and quotations 
from not-yet-discovered works of his, but letters that he wrote and prefaces to 
his works, in which he makes a number of comments on the mathematics of 
his time. Taken together these provide a view of the work of the better part of a 
century through the eyes of one of its major figures, and it is some elements of 
this view that I want to sketch out in this chapter.

6

Tenth-Century Mathematics through the Eyes of 
Abu Sahl al-Kuhi

J. Lennart Berggren
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We have already spoken of Ab¥ Sahl as a geometer, rather than a math-
ematician generally, and something that stands out as one reads his treatises 
is that all of them are devoted to geometry. Indeed, al-K¥h• was known as 
“Master of his age in the art of geometry” by his two younger contemporaries 
Abu’l-J¥d and al-Shann•.5 In the preface to his treatise on the regular heptagon 
that is preserved in MS. Cairo MR 40 Ab¥ Sahl writes of the benefit of geom-
etry to the mathematical sciences and describes it as “the example which ought 
to be imitated in the pursuit of truth (in the theoretical sciences) and the leader 
which is to be followed when it comes to honesty.”

Perhaps the reason for his devotion to geometry lay in what he saw as 
the surety of the knowledge gained from it. In the preface to his treatise on the 
regular heptagon just cited, he writes, “Its (geometry’s) foundation is firm and 
its rules are consistent and unchanging. It can be affected neither by refuta-
tion nor can it be afflicted by infirmity.” In contrast to this certainty, he writes 
in his treatise on the distance to the shooting stars of Galen’s account of the 
variety of explanations offered for shooting stars, and the controversies these 
opinions occasioned. He then says, “But the other group, whom neither Galen 
nor anyone else could criticize . . . because they depended on proofs . . . were 
the mathematicians,” and he strikes a similar note in his correspondence with 
al-Íåb• where he contrasts “opinion” in physics with “demonstrative science.”

It was, however, geometry in a wide sense that interested him, not only 
the works of Euclid, Apollonius, and Archimedes. For example in his treatise 
on the possibility of infinite motion in a finite amount of time he studies the 
movement of the shadow of a sundial’s gnomon, and in the aforementioned On 
Shooting Stars he is interested in finding the distance to and size of the shoot-
ing stars. Moreover, he tells us in his treatise on the computation of rising times 
that he has investigated astronomy as well as centers of gravity and optics, 
and his treatise on the complete compass was, as he himself notes, intended 
to describe a mathematical instrument useful for drawing conic sections on 
sundials and astrolabes.

Al-Kuhi and Problems from Hellenistic Geometry

However, these latter treatises are details against an overwhelming background 
of the rich geometrical heritage from the Hellenistic world, and the intellectual 
presuppositions of that heritage, as found in and implied by the works of Euclid, 
Archimedes and Apollonius. Indeed, no fewer than fifteen of his works deal 
directly with problems discussed by these three mathematicians and many of the 
others are either very much in the spirit of their works generally or are specific 
extensions of classical problems. Two examples of such extensions are:
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1. Al-K¥h•’s problem of constructing circles “tangent” to two given objects (any 
one of which may be a point, a straight line, or circle)6 and having its center on a 
line given in position.7 This is just Apollonius’s problem on constructing a circle 
“tangent” to three given objects with the three objects replaced by two but the 
requirement added that the center of the circle to be constructed must lie on a given 
(possibly curved) line (as in figure 6.1 above).

2. Al-K¥h•’s extension of two problems Archimedes solves in On the Sphere and 
Cylinder II, namely:

a) To construct a segment of a sphere equal in volume to a segment of a given 
sphere and similar to another segment of that sphere, and

b) Do the same as in (a) with the word “surface” substituted for “volume,”

Al-K¥h• then solved the following problem: 

c) To construct a sphere having a segment equal in surface area to a given 

segment of one sphere and in volume to a given segment of another sphere.

Other examples are his extensions (not all successful, as indicated 
below) of Archimedes’ results on centers of gravity of figures having an axis 
of symmetry.

Of course it is possible to find other tenth-century geometrical works 
that might be described as extending Greek problems. For example, the work 
of Abu’l-Wafå< on inscribing and circumscribing figures with some symmetry 
properties in other such figures comes to mind, a problem also treated by Ab¥ 
Kåmil and al-K¥h•,8 but al-K¥h• seemed to be unique in finding and (generally) 
solving problems of some real depth. 

Figure 6.1
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However, other Islamic geometers frequently made creative contribu-
tions in extending the Greek tradition, as Hogendijk (1984) points out in his 
survey of Islamic work on the regular heptagon. Although this work peaked in 
the latter half of the tenth century, when it involved a half-dozen well-known 
geometers,9 it also stimulated five solutions of the problem by Ibn al-Haytham, 
whose most important work fell in the eleventh century, and even work by 
Kamal al-D•n ibn Y¥nus at least 200 years later.

The problem of constructing the side of a regular heptagon in a given 
circle seems to have arisen because Abu’l-J¥d, whose flattering opinion of al-
K¥h• we quoted above, criticized the solution found in the Arabic treatise titled 
Book of the Construction of the Circle Divided into Seven Equal Parts. In its 
incipit the treatise is said to have been translated from an original of Archime-
des by Thåbit ibn Qurra. However there are a number of perplexing features of 
the treatise, not the least of which are the facts that of its eighteen propositions 
only two concern the subject announced in its title, the regular heptagon, and 
the fact that in these two propositions the author used a particularly vexing 
verging construction to divide a line segment into three segments satisfying 
certain proportions. These proportions, in turn, guaranteed that the resulting 
segments would, as sides of a triangle, produce a regular heptagon in the cir-
cumscribed circle.10

Almost as damning as Abu’l-J¥d, who described the solution given in 
the Construction of the Circle Divided into Seven Equal Parts as something 
that appeared more difficult than the original problem, al-K¥h• wrote in the 
introduction to his first treatise on the heptagon (found in the Cairo ms. MR40) 
that “it appeared from the book Archimedes authored on the subject—a subtle 
book—that he did not fulfill his aim and achieve his desire in his solution in 
any way.” Some, al-K¥h• continued, believed that Archimedes’ treatment was 
incomplete because it was impossible for him to do more, others because he 
filled-in the gap in a treatise that had not come down to the Arabic writers. 
(Abu’l-J¥d went further and suggested that Archimedes had made a mistake, 
a suggestion tantamount to heresy among tenth-century geometers, and on for 
which al-Sijz• roundly criticized him.)

The question was, however, what to do next. Some held—according to 
al-K¥h•—that “there was no way in which and no method by which one could 
find”11 what Archimedes had failed to find. Others believed it could be done, 
and it appears that both al-Íaghån• and al-K¥h• solved the problem at close to 
the same time. (Hogendijk (1984) argues that al-Íaghån•’s solution was earlier, 
and this may very well be the case since his solution bears clear traces of the 
verging found in the Construction of the Circle Divided into Seven Equal Parts, 
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whereas al-K¥h•’s solution removed all trace of the verging and divided the line 
segment directly by means of conic sections.)

Two other interesting features of tenth-century geometry that emerge 
from the various works on the heptagon are:

1. The importance of the patronage of the B¥yid kings in supporting geometrical 

research, and, something that A. Anbouba has pointed out, 

2. The role correspondence played in the development of mathematics at that time.12

As for the importance of patronage, the initial satisfactory solutions of 
the heptagon problem, that of Ab¥ Sahl as well as that of al-Íaghån•,13 were 
both dedicated to the king >A∂ud al-Daula, and Ab¥ Sahl wrote another one 
dedicated to his son, Prince Abu’l-Fawåris, who later took the title Sharaf al-
Dawla. Moreover, his Treatise on the Ratio Between Three Lines is dedicated 
to Sharaf al-Dawla, and the introduction to his treatise on rising times makes it 
clear it was written in the context of activity at the Royal Palace.

As for the matter of correspondence, one is struck by how much of what 
has survived just on the topic of the heptagon is the subject of letters, for exam-
ple: Letters by Abu’l-J¥d ibn al-Layth to one al-Óåsib (in Bukhara) in which 
the former describes the methods of al-Íaghån• and al-K¥h• as well as his own 
method, letters to Abu’l-Óasan al-Ghåd•, and to al-B•r¥n•, as well as correspon
dence between al-Sijz• and Ab¥ Sa>d al->Alå< ibn Sahl. The topic is, in addition, 
one of those treated in the letter of al-Sijz• to “the people of Khorasan.”

Al-Sijz• was particularly active as correspondent. Twenty-two of the 
thirty-five treatises listed under his name in Sezgin (1974) are letters (or 
“answers”), and in several the correspondent is named.

Al-K¥h• himself participated in the scientific correspondence of his 
epoch, as is witnessed by the partially extant correspondence he had with al-
Íåb•. This seems to have had the benefit for al-K¥h• of providing him a forum 
in which to try out ideas, and evidently saved him from the embarrassment of 
publishing his alleged discovery on the center of gravity of a semicircle and its 
consequence that the value of p was 31⁄9.

This topic, centers of gravity, is another example of one which interested 
the Greeks, and in particular Archimedes, and also elicited interest from some 
of the tenth-century geometers, including al-K¥h•, although the level of inter-
est hardly rivaled that surrounding the regular heptagon. Thus al-K¥h• gives us 
the precious information that he possessed a book attributed to Archimedes’ 
“On Centers of Gravity,” but one that did not contain any proof of the law 
of the lever, since he refers to it as a “premiss” for Archimedes’ treatment of 
barycentric questions. We also learn that Ab¥ Sa>d al->Alå< ibn Sahl wrote on 



J. Lennart Berggren 182 Tenth-Century Mathematics through the Eyes of Abu Sahl al-Kuhi 183

centers of gravity and also inquired on the status of the law of the lever. Finally, 
it appears from al-K¥h•’s treatise on the volume of a segment of a paraboloid 
that his work on centers of gravity motivated his work on that question in men-
surational geometry.

Two versions of his treatise on the volume of a segment of a paraboloid 
(a third topic in which the tenth-century geometers knew they were following 
in Archimedes’ footsteps) have come down to us, and it is interesting to note 
al-K¥h•’s almost apologetic tone in his introduction to the first of these. He 
recognizes that Thåbit wrote on the subject, but he said that he is working on 
it because he needs the result for work he is doing on centers of gravity and 
because he feels Thåbit’s arguments are not easily understood. One wonders if 
the somewhat defensive tone might be because Ibråh•m ibn Sinån had not taken 
well to the suggestion that the work of his grandfather, Thåbit, on the parabola 
was less than clear.

Like his first treatise on the heptagon, al-K¥h•’s treatise on the measure-
ment of the paraboloid also attracted serious study by the following generation 
of mathematicians. Thus, Ibn al-Haytham says in his Discourse on the Mea-
surement of the Paraboloid that he knew al-K¥h•’s work on the subject.14

Finally, to close this discussion on centers of gravity, we remark that 
it appears from al-Khåzin•’s 12th-century treatise, The Balance of Wisdom, 
that Ibn al-Haytham also wrote on centers of gravity, for al-Khåzin• summa-
rizes both his and al-K¥h•’s treatises on this matter in Chapter 1 of the First 
Discourse of that work.15 However, al-K¥h•’s treatise has not survived and is 
known only because al-Khåzin• summarized it together with that of Ibn al-
Haytham, which has also not survived. This suggests that the topic was not 
regarded as one of major interest at the time, despite its impeccable credentials 
of being among the topics that interested Archimedes, and it did not create a 
lasting tradition. It seems that this was one aspect of the Archimedean tradition 
that did not flourish in the tenth century.

Al-Kuhi and Methods of Hellenistic Geometry

It was, however, not just the problems of Hellenistic mathematics that attracted 
the geometers of the tenth century but its methods as well. Thus, the method of 
analysis and synthesis was standard in the tenth century and one that al-K¥h• 
and his contemporaries used freely. As a result of this activity at least one trea-
tise on the method was written during that century, namely that of Ibråh•m ibn 
Sinån, and one in the following century, namely that of Ibn al-Haytham.16

One subject that appears to have occasioned some dispute during the 
tenth century was that of the relation of analysis to synthesis. According to 
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the standard, simple account of the relationship between the two, as given, 
for example, by al-Sijz• in his Treatise on Geometrical Problem Solving 
(Hogendijk 1996, p. 4), the synthesis was just the analysis done backward, so 
the steps of the two should be in virtual one-to-one correspondence. However 
that is not what one finds, and Ibråh•m ibn Sinån recorded the dismay of some 
geometers on seeing geometrical objects appear in the synthesis that did not 
occur in the analysis.

Ibn S•nån referred to this phenomenon in the following passage17

I have found that modern geometers have neglected the method of Apollonius in 
analysis and syntheses, as they have in most of the things I have brought forward, 
and that they have limited themselves to analysis alone in so restrictive a manner 
that they have led people to believe that this analysis did not correspond to the 
synthesis effected.

Ibråh•m’s answer was that the lack of correspondence was only superfi-
cial, and that the reason it seemed so was that the analysis stated the steps in an 
abbreviated version but one which was perfectly clear to the experts.

As an example of this consider al-K¥h•’s analysis of a problem from 
Drawing two lines from a known point.18 The problem is the following (figure 
6.2 illustrates the analysis and subsequent synthesis for this problem): 

A point A and a line BG are given. Draw two line segments from A to the line, 
containing a given angle, so that the two segments AB and AG have to each other 
a given ratio.

Analysis: Assume the line segments AB and AG are drawn. (i) Since 
AB:AG is known and ∠BAG is known, D(ABG) is known in form. (ii) There-
fore ∠ABG is known. (iii) But point A is known, hence line AB is known in 
position. (iv) And since ∠BAG is known, line AG is also known in position. (v) 
Since line BG is known in position, then, points B and G are both known.

In fact no synthesis is given for this analysis, but it is not hard to supply 
one, as follows:

Figure 6.2
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Synthesis: (i) Let the given ratio be the ratio of the lines P and Q. Draw P and Q 
(as LK, KM) so that the angle they contain (∠LKM) is the given angle. Draw 
LM. (ii) Drop a perpendicular from K to LM, defining N. Also drop a perpen-
dicular from A to the given line, defining D. (iii) Draw DB so that AD:DB=
KN:LN. Draw AB. (iv) Draw AG so that ∠BAG is the given angle. Claim: 
AB:AG=P:Q. (v) D(ABD) ~ D(KLN), because both have a right angle and the 
same ratio of sides containing that angle. (vi) Hence ∠ABG = ∠KLM; but 
∠BAG = ∠LKM = the given angle, so D(ABG) is similar to D(KLM). (vii) 
Therefore AB:AG = KL:KM = P:Q.

Such a synthesis, using what we have elsewhere19 called a scale model of 
the solution, al-K¥h• has also given for another problem, and it is exactly the 
kind of synthesis Ibråh•m was talking about when he wrote:

As for the fact that they draw lines which were not drawn in analysis, it does not 
establish in any way any difference between analysis and synthesis; for example, 
when their analysis ends up with the fact that some triangle is known in form, 
because its angles are known, though in the analysis it is not drawn on a line 
known in magnitude, they do nevertheless deduce from the ratios of its sides, 
one to another, a thing by which the problem gets solved. Can they avoid then, 
in their synthesis, setting up a triangle whose angles are equal to these known 
angles, in order to come to know the ratios of its sides, and make from it what 
gets the problem solved?

Thus auxiliary diagrams such as KLM above are entirely appropriate in 
syntheses, and do not impair the similarity between analysis and synthesis, the 
former being, in Ibråh•m’s word, an abridgement of the latter.

Al-K¥h•’s treatise that we referred to above is unusual in that it considers 
about a dozen problems (variations on a single theme, admittedly) entirely by 
the method of analysis, where the analyses form a series of successive reduc-
tions, in the sense that there are analyses for the initial problems in the two 
cases when the given line BG is a straight line or a circular arc, and, after that, 
the analyses are reductions of the problem under discussion to the problem just 
analyzed. By the time one has about half a dozen analyses, each resting on the 
previous one, it becomes something of a puzzle to imagine what the synthesis 
of the last problem would look like.

On the other hand, it is possible to see in another treatise by al-K¥h•, his 
Ratio from a Single Line Falling between Three Lines, a more direct response to 
the criticism that Ibråh•m ascribes to unknown parties, namely that the structure 
of and diagrams for the synthesis should be as nearly identical as possible with 
those of the analysis. Indeed, in that treatise al-K¥h• ensured that the analyses 
and syntheses contain virtually the same steps in every proposition. Perhaps he 
had read the critique Ibråh•m refers to after he had written his On Drawing Two 
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Lines from a Single Point, and took the criticism seriously. (Perhaps, in fact, 
that treatise was one of the writings that provoked the criticism.)

It is apparent from al-K¥h•’s analysis that a fundamental concept in an 
argument by analysis is the idea of a mathematical entity (such as position, 
magnitude or shape) being “known.” The word is used almost exclusively in 
Arabic treatises where the Greeks would have used the word “given,” and the 
basic text was Euclid’s work Givens, best known by its Latin title Data. Al-
K¥h• studied the work extensively and had not only thoroughly mastered its use 
but had written a treatise adding several propositions to it. (Since al-K¥h•’s use 
for those propositions is not known the treatise is one of his least interesting, 
but that may not have been how he viewed the matter.)

However, whatever sense (or senses) the word ‘given’ may have had to 
the Hellenistic Greeks, the corresponding Arabic term, “known,” had acquired 
a variety of different senses to the tenth-century Arabic geometers. A particu-
larly vexing concept was the concept of a known ratio. According to Euclid’s 
Data a ratio was given when it was equal to the ratio of two given magnitudes 
(a magnitude being given when it was possible to find its equal). (A classical 
analysis problem that depends on this latter notion is the famous problem in 
the Meno that asks for a triangle equal to a given triangle to be inscribed in a 
given circle.)

By al-K¥h•’s time the idea of a known ratio had been divided into two 
separate notions: a ratio known from the point of view of quantity (nisbat 
al-kamm), where the numerical measure of the antecedent relative to the con-
sequent is known, and a ratio simply “known,” in the sense of Euclid’s Data. 
Al-K¥h• called this latter an “existent ratio,” and he had a long discussion with 
al-Íåb• about these two different senses, the first of which he ascribes to the 
algebraists and astronomers, and with which he wants nothing to do!

Al-K¥h• writes as follows to al-Íåb•:

For we do not mean by this [geometric] aspect of “known” the amount of a thing, 
nor by “known ratio” the measure of one of them as compared with the other
. . . . As for the existent ratio, according to the sense in which we use it, how could 
it not be known between the circle and the square when each of them is known. 
If two magnitudes are known then indeed the ratio of one of them to the other 
is, in our opinion, known—as Euclid proved in the first theorem of the Data. I 
am astonished at people who claim that the area of a circle is not permitted to be 
equal to the area of a square, and that there is no ratio between the two of them, 
and who say (so) since the circumference of the circle is curved and not of the 
same kind as the circumference of the square. . . .

Likewise, Ibn al-Haytham, referring to the same problem and, arguing 
for the existence of a square with the same area as the circle, states: 
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The essence of the knowable notions does not require that one perceive them or 
that they be actually produced. Rather, if the proof of the possibility of the notion 
has been provided, the notion is sound, whether one has actually produced it or 
not. (Quoted from Hogendijk 1985a, 96.) 

This debate touches directly on the famous problems of trisecting the 
angle and squaring the circle, for consider the following argument for squar-
ing the circle:20 A circle is given in position and magnitude, and, according to 
analysis, a square with the same magnitude is postulated. The circle and square 
have the known ratio of 1:1 and the circle is known in magnitude, hence by 
Data, 2 the square is known in magnitude. Then, by Data, 55 the side of the 
square is known in magnitude. A similar argument, also relying on Data, 2, just 
as easily trisects the angle.

The apparent flaw in the above analyses occurs in the application of 
Data, 2, which states that “If a known magnitude has a known ratio to another 
magnitude, the latter is also known in magnitude.” The proof of this proposi-
tion involves a rearrangement of the ratios, which in the case of the quadrature 
of the circle would imply forming a ratio of a circle to a square. Pursuing a 
resolution of these anomalies, then, forces us to restate Data, 2 (and some other 
propositions) to forbid ratios between angles, and between circles and squares! 
This clearly contradicts how Data, 2 and other Data propositions were used, 
and puts us in the difficult position of having to rewrite the statement of a basic, 
heavily utilized proposition with no apparent evidence of ancient recognition 
of the anomaly in mathematical texts.

We believe that this conundrum provides a context for the remarks both 
of al-K¥h• and the later remarks of Ibn al-Haytham. 

All of these issues, of course, relate to the question of when a problem 
has been solved or, to put it differently, what constitutes a valid solution to a 
problem. We have seen some of this discussion in tenth-century reaction to 
Archimedes’ construction of the heptagon, and Hogendijk pointed out the 
discussion that occurred about the validity of “moving geometry,” with its 
verging constructions, in comparison with that of the fixed geometry, that is, 
constructions in the Euclidean manner.21 It appears that the adherents of fixed 
geometry won the day, but it was not a geometry limited to Euclidean methods. 
For example, Ab¥ Sahl writes that the chord of 1° is known according to him 
who trisects the angle,22 and al-K¥h•’s trisection of the angle uses an elegant 
intersection of a hyperbola and a circle.23

This having been said, however, it must be added that the Hellenistic 
tradition expressed by the condemnation by anonymous “geometers” as “no 
small error,”24 of using conic sections when circles and straight lines will solve 
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the problem, still has a lingering effect on al-K¥h•. This is apparent from his 
discussion in his aforementioned treatise Ratio from a Single Line, where he 
considers the following problem (figure 6.3):

To draw a straight line from a known point G to cut three lines ED, EH, and BZ 
known in position so that the ratio DH:HK of one of the two segments which are 
formed between two of the three lines to another segment so formed is known.

At the end of the treatise, after he has dealt with the case shown above 
when the three given lines are straight lines in general position, al-K¥h• extends 
the problem by considering the case when two of the given lines are straight 
(and non-parallel) and the third is replaced by a curve (which al-K¥h• refers 
to as a ‘non-straight line’). In this case he again, as in the trisection problem, 
effects the solution by means of a hyperbola, this time one passing through 
the given point and whose asymptotes are two lines parallel to the two given 
straight lines. The hyperbola is implicity assumed to intersect the given curve 
but, since that curve has no description, any consideration of when this might 
in fact happen is impossible.

There are two other treatises that we know of in which al-K¥h• speaks of 
curves other than straight lines or conic sections, one of them being his treatise 
on the astrolabe (Berggren 1994). But he does not do anything with them in 
that treatise, other than to refer to them, since, as he says, “this is not our aim 
in this treatise.”25 A true use of an arbitrary “non-straight” line is in his On 
Centers of Tangent Circles, in which (as in his Ratio from a Single Line Falling 
between Three Lines) al-K¥h• uses conics to solve, for the case in which one of 
the givens is an arbitrary curve, a problem he has already solved without conics 
when that given is a straight line. The above evidence would seem to indicate 
that he still regarded a problem solved by conics as a problem solved, but a 
solution without conics was to be preferred to one with conics, the very view 
we found expressed by Pappus’s anonymous “geometers.”

Figure 6.3
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We noted above the amount of geometric work in the tenth century that 
involved analysis, and the question arises of why one so often finds analyses in 
the Arabic texts of the tenth century. On the one hand it could be argued that 
this was done because of the style set by Apollonius (and perhaps Archimedes 
in the first few propositions of SC II), and al-K¥h• certainly followed their lead 
in several of his treatises, for example, in his brilliant solution to an extension 
of a problem of Archimedes from SC II (discussed on p.179 above) and in his 
construction of an equilateral pentagon in a given square. And the example of 
Apollonius is cited by Ibråh•m ibn Sinån, when he wrote, “I have found that 
modern geometers have neglected the method of Apollonius in analysis and 
syntheses,” but in fact Ibråh•m is complaining about the modern practice of not 
giving the syntheses. And, indeed, al-K¥h• writes, at the end of his treatise on 
two lines from a known point:

And if we were to go into partition (into cases), diorismos, synthesis and the posi-
tions of the points by Apollonius’ method in some of his books a very big book 
would be produced, but we hope to have the leisure to do it later, God willing.

And in the second book, chapter six, of his treatise on the astrolabe he 
omits all syntheses. Thus, it seems to us that at least with some authors analy-
sis alone was an accepted method of giving proofs and one is perhaps seeing 
creative mathematicians, familiar with how to develop a synthesis from an 
analysis, saying that the synthesis can wait until they have some time. In the 
meantime, the excitement of new discoveries and solutions to new problems 
must receive their attention.

For the tenth century was a creative time in geometry, and al-K¥h• em-
phasizes in a treatise on the heptagon26 that he has solved in many ways that 
which Archimedes was unable to complete in even one way. According to al-
Samaw<al “the construction of the regular heptagon in the circle (was done) 
by Wayjan ibn Rustam al-K¥h•,”27 and al-Samaw<al wrote this to argue for his 
belief in the continued progress of the sciences, a belief that was shared not 
only by >Umar al-Khayyåmi and Abu’l-Qåsim al-As†urlåb•, his predecessors in 
the twelth century, but by Ab¥ Sahl who wrote in his preface to the treatise on 
the regular heptagon, “They (earlier geometers who failed to find the side of 
the regular heptagon) were sure, nevertheless, according to what their convic-
tion has promised them, that the science of geometry will endure and it will 
continue to grow in contrast to man’s life-span, which comes to an end.”
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Other Works of al-Kuhi

We leave the domain where the great Hellenistic geometers wrote when we 
come to Ab¥ Sahl’s treatise Constructing the Astrolabe with Proofs. Here Ab¥ 
Sahl is working in what was virtually an Islamic tradition, and his work was the 
subject of a commentary by his contemporary, Ab¥ Sa>d, and was also known 
to al-B•r¥n•.

It is instructive to compare this work with other tenth-century works 
on the astrolabe, such as that of al-Sijz•, whose exhaustive treatise on astro-
labes was a sort of encyclopedia of astrolabes, and those of Óabash on the 
melon-form astrolabe and al-Íaghån• on planispheric astrolabes in which the 
projection of the sphere onto the plane through its equator is not from a pole 
of the sphere but from some other point on the axis. Ab¥ Sahl’s treatise is 
distinguished from much of the surviving Islamic literature on the astrolabe 
written up to his time in all of the following three features: a general treatment 
of stereographic projection, a discussion of a considerable number of variants 
of stereographic and non-stereographic projection, and being principally con-
cerned with an extensive body of problems of slight interest to the astrolabe 
maker but of considerable interest to a geometer. As regards the treatment of 
stereographic projection the reader finds in this treatise a systematic exposition 
of the general theory of stereographic projection developed in the context of 
Book I of Apollonius’s Conics. Al-K¥h• proves the circle-preserving property 
of the projection in its most general form,28 and, in using the theory to produce 
the curves on the plate of the astrolabe, he shows that only one technique is 
necessary to project any circle symmetric to a meridian provided its inclination 
to the equator is known. (See Berggren 1991 and 1994.)

Thus, it was all branches of geometry that attracted al-K¥h•, not only 
those represented in the Elements, Conics and Sphere and Cylinder but also 
problems related to the construction of such astronomical instruments as the 
astrolabe and the sundial. Thus, in addition to the fact that his treatise on the 
astrolabe is the longest of his known works, he closes his Complete Compass 
as follows. After he has shown how to use this instrument that he designed for 
drawing lines, circles and conic sections satisfying certain given conditions 
he says, “It is now evident how to draw by means of this compass, the inter-
sections of conic surfaces with any one of a variety of surfaces, according to 
a given position.29 Consequently from this it will be easy for us to construct 
astrolabes on plane or axial surfaces, and to construct sundials on any surfaces, 
and in the same way all the instruments on which are found lines of intersection 
of conic surfaces with an arbitrary surface. But God knows best.”
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As regards al-K¥h•’s treatment of projections other than that of the 
planispheric astrolabe it suffices to say here that he recognized that either 
orthographic projection or any projection from a point on the axis of the sphere 
onto a surface symmetric about the axis of the sphere30 produces a possible 
astrolabe. He also states that the projection, which al-B•r¥n• informs us was 
invented by al-Íaghån•,31 of circles on the sphere from a point on the axis other 
than a pole produces on the plane of projection conic sections (other than cir-
cles), and he cites the relevant proposition from the Conics. Finally, he points 
out the cases in which these mappings are, as we would say, not one-to-one. 
It is these features of the treatise that provoked the most extensive comment 
by Ab¥ Sa>d.32 Ab¥ Sahl’s treatise resembles those of Óabash and al-Íaghån• 
in being about mathematical curiosities, but instead of developing new math-
ematical projections Ab¥ Sahl regards the ordinary planispheric astrolabe as 
providing an opportunity for using Euclid’s Data to analyze, and his Elements 
to solve, problems in geometrical construction. 

Finally, the following three works deal with problems not found in the 
Greek literature, but with techniques that are continuations of Hellenistic tech-
niques.33 I know of no other treatises like them in the tenth-century geometrical 
literature. They are:

1. On the distance from the center of the earth to the shooting stars.

2. On the area of the earth’s surface visible from a given height.

3. On the possibility of an infinite motion in a finite time.34

Al-K¥h• seems to have been utterly uninterested in the number-theoretic 
facets of the Greek tradition, exemplified by Elements VII–IX, and the writings 
of Nicomachus and Diophantus, and in this he separates himself from Abu’l-
Wafå<, Ab¥ Ja>far al-Khåzin and the later Ibn al-Haytham. Neither did he con-
tribute to the development of algebra, as did al-Karaj•, nor to any of the lively 
traditions of arithmetic,35 which was a popular topic with many tenth-century 
writers, and his works show no interest in the rapidly developing trigonometry 
or in the numerical methods of which there was a strong tradition going back to 
antiquity. Indeed, he specifically denies any expertise in numerical methods in 
a passage in a work without any title.36 The work begins “Some of our friends 
. . .” and the passage comes just after he has shown how by applying the Trans-
versal Theorem one may calculate successively, for a given degree of the eclip-
tic, its declination, where it rises on a given horizon, its rising time both at the 
given locality and at the equator, and the equation of daylight on the day when 
the sun is in that degree. He says:
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Notwithstanding . . . I am not sure if there is not among the solutions of this 
problem an easier, shorter or more expeditious [route] than the one we followed, 
used by the skilled mathematicians and the expert z•j-makers, especially if they 
give priority to multiplication over division, or delay the one until after the other, 
or substitute the one for the other. . . . 

In fact, in this treatise he spells out his interests fairly explicitly. He states 
that although he has a sufficient knowledge of Ptolemaic astronomy he has not 
spent the time in detailed work and calculations that, alone, can lead to real 
expertise. In fact he says, 

Despite the sublimity of these astronomical investigations we do not confine 
ourselves to their investigation and ignore the other sciences which scholars usu-
ally investigate, for example, the science of the centers of gravity, the science of 
optics, and the science of the characteristics of the forms of the conic sections, 
which is the most astonishing of them all. . . . Add to that the theories of Archi-
medes and the derivation of the geometrical theories . . . a single science, which 
stands by itself. The obsession of scholars with the derivation of such things (i.e., 
the sciences mentioned above) is greater than their obsession with the derivation 
of the other sciences beside these. We, likewise, [follow in the same path] without 
any boasting or insinuation. 

Thus al-K¥h• obviously thinks of himself as being in the mainstream 
of mathematical investigations of his time, and one notes, again, no mention 
of the algebraic or numerical side of mathematics. It is possible, I think, to 
explain why he does not think of the numerical side of mathematics as being 
in the mainstream, a reason suggested by the characterization he gives of his 
mathematics as “demonstrative,” and his denouncing the mathematics found in 
Archimedes’ Measurement of a Circle as approximative and of a type that does 
Archimedes no credit—so much so that he says that he believes the treatise 
is spurious. Although he mentions trigonometric tables specifically when he 
compares the value of p implicit in Ptolemy’s Almagest with the much cruder 
value in Measurement of a Circle, and although he says Ptolemy uses a finer 
division, it is clear that he feels is is only comparing various degrees of bad 
mathematics—not the bad with the good.

Apart from the reference to optics (an interesting allusion in view of 
other known connections between Ab¥ Sa>d al->Alå< ibn Sahl and al-K¥h• as 
well as the latter’s influence on Ibn al-Haytham), Ab¥ Sahl’s account of his 
scientific interests accords very well with what we would have deduced from 
his existing treatises. This suggests that our list, if not complete, is at least 
representative.
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Concluding Remarks

I would also like to add something to this discussion about Ab¥ Sahl’s char-
acter. Although afflicted by no false humility—he knew when he had done a 
good piece of work and was not reluctant to say so—he appears to have been 
a man who was, from some points of view, dedicated to the search for truth 
in the sciences he investigated and who was quick to point out when he was 
speaking without really expert knowledge. For example in his discussion of 
the complete compass he admits that he might be using terminology that is not 
completely standard because there might be a treatise on the subject which he 
has not seen. In his work on calculating the rising times of arcs of the ecliptic 
he is quick to remind the reader of his own lack of expertise in the “tricks of the 
trade” of the expert table-makers, and says at the end of the treatise, “Now if 
there is anything in this discourse which is redundant to the argument, and not 
in its right place, please accept my apology. This was mentioned only because 
one statement led to another.”

He was also acquainted with failure. For example, >Umar al-Khayyåm• 
mentions him as a one of the mathematicians around >A∂ud al-Dawlah who 
were unable to solve the problem of dividing 10 into two parts a and b (a > b) 
so that, as we would state it, a2+ b2 + a/b = 72. And there was also the incident 
in which he misled himself on the value of p because he convinced himself, on 
the basis of a numerical pattern, of an incorrect result for the location of the 
center of gravity of a semicircle. (This latter incident was somewhat discredit-
able to him because of what can only be described as his stubborn refusal to 
acknowledge that he had made a mistake that contradicted the estimate for p in 
Archimedes’ Measurement of a Circle.)

To close this discussion, I would like to raise a question, one which 
is phrased specifically in terms of al-K¥h•’s work but which equally could 
be asked of that of several of his contemporaries in the tenth century, and 
that is: What, if anything, about al-K¥h•’s work reflects its origins in Islamic 
civilization? Or, to put it differently, if al-K¥h•’s work had been translated 
anonymously into Latin and stripped, as such works sometimes were, of the 
dedications and the occasional “By Allah,” what is there that might cause us 
to suspect that we were dealing with a translation from Arabic and not from 
Greek? Such a question could not be asked of any z•j, with its references to 
the coordinates of Mecca or interest in azimuths. It could not be asked of the 
geometrical solutions to the problem of finding the direction of Mecca given 
by Ibn al-Haytham. Neither would one ask it of Ibråh•m ibn Sinån’s work on 
sundials, nor of Abu’l-Wafå<’s work on the geometry of craftsmen.
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There are, of course, some approaches to problems that definitely are not 
found in the classical literature, and his use of conic sections for constructing 
a regular heptagon, his consideration of arbitrary curves, and his approach to 
analysis seem to be products of his own age. One even finds a hint of a specifi-
cally Islamic context in his interest in azimuths in his treatise on astrolabes. 
But it would appear, on the whole, from the problems he addressed and the 
methods used to address them that his works could have been written by any 
sufficiently able Greek geometer after the times of Archimedes and Apollo-
nius. And I confess that I have a feeling on reading his works that I am reading 
the works of one who might have been considered at his time as one of the “old 
guard.” Certainly, one can hardly avoid such a feeling in looking at K¥h•’s work 
on rising times, where he explicitly states that he wrote it to show that one can 
do very nicely with Menelaus’s theorem what was beginning to be done in his 
time by means of the newly developing trigonometric theory. Perhaps, to adapt 
Keynes’s description of Newton, al-K¥h• was the last mathematician to look on 
mathematics with the eyes of the great Hellenistic geometers.

Notes

1. This is simply one possible version of his name, based on a number of variants in 
the manuscripts. The most common reading is, in fact, Ab¥ Sahl W•jan ibn Wustam al-
Q¥h•. Some standard bio/bibliographical sources on al-K¥h• are Sezgin 1974, 314–321; 
Dold-Samplonius Dictionary of Scientific Biography, vol. XI (1975), pp 239–241.

2. According to Bayard Dodge, trans., The Fihrist of al-Nadim, New York 1970, 669.

3. Quoted from Sesiano 1979, 281.

4. According to Sezgin 1974, 339, Ab¥ Naßr ibn >Iråq cites K¥h•’s Points on Lines in the 
Ratio of Areas in his Al-Maså’il al-Handasiyya.

5. Quoted in Hogendijk 1985b, 101, n. 5.

6. The requirement that a circle be “tangent” to a point means that it passes through the 
point.

7. This is No. 9 in Sezgin 1974, 319. It has been published by Abgrall 1995.

8. Hogendijk 1985b. 

9. Abu’l-J¥d Mu˙ammad ibn al-Layth, al-Sijz•, al-Íaghån•, al-Shann•, al->Alå< ibn Sahl, 
and Ab¥ Sahl al-K¥h•. 

10. For details on the medieval and modern literature on this treatise and its history see 
Hogendijk 1984.

11. Hogendijk’s translation in Hogendijk 1984, 214.

12. Anbouba pointed this out in Anbouba 1977.
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13. The fact that both al-K¥h• and al-Íaghån•’s treatises were dedicated to the same 
patron supports, in view of the other evidence, the supposition that al-K¥h• developed 
al-Íaghån•’s solution, rather than discovering the whole approach by conic sections 
independently.

14. Rashed 1981, 258.

15. Khanikoff 1857, pp. 26–33.

16. Recently published by Rashed in MIDEO 20 (1991), 21–231 along with Ibn al-
Haytham’s treatise on knowns in MIDEO 21 (1993), 87–275.

17. Quoted from Rashed’s article on Ibråh•m ibn Sinån in the DSB VII, 2–3.

18. The author, jointly with Glen Van Brummelen, has published this in Suhayl 2, 2001 
pp. 161–198.

19. Berggren 1983.

20. I thank Glen Van Brummelen for this argument.

21. See Hogendijk 1984, esp. p. 200 note 3.

22. The passage from al-K¥h•’s correspondence is in Berggren 1983, 54.

23. See the accounts in Sayili 1962 and in Knorr 1989, 301–309.

24. In Book iv of Pappus’s Math. Coll. (Vol. I, pp. 270–272). I am not, of course, sug-
gesting that Pappus was a source for al-K¥h•.

25. Berggren 1994, 150.

26. Preserved in BN 4821 and dedicated to Abu’l-Fawåris, the son of >A∂ud al-Dawlah.

27. This ascription of the construction of the regular heptagon to Ab¥ Sahl al-K¥h• sup-
ports (and perhaps reflects) al-K¥h•’s own words in his treatise on the regular heptagon, 
“Now the easiest among those pursuits is the science of the side of the regular heptagon 
in a circle to which the intellects of the renowned among the famous geometricians 
have been applied . . . . Nevertheless, no one among them was able to attain an iota of 
it. Nevertheless, when the servant of our lord . . . >A∂ud al-Dawlah . . . looked into it he 
was able to find it.”

28. That is, in the case that any circle on the sphere not containing the pole is projected 
from either pole onto any plane perpendicular to the axis.

29. Woepcke 1874, 11 notes in a footnote here: “To give to the preceding constructions 
this extension it will suffice to determine the position and the two openings of the com-
pass relative to the plane tangent to the given surface at the point where the axis of the 
compass rests on the surface.”

30. Ab¥ Sahl’s choice of words (“surfaces having an axis which coincides with that of 
the sphere”) shows he intended to be completely general, but the only specific examples 
he mentions are cones, cylinders or planes. 
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31. See Berggren 1982. 

32. We shall publish this commentary separately.

33. One would normally add here his treatise On the azimuth of the qibla, but, despite 
Sezgin’s attribution of it to al-K¥h•, it seems unlikely that it is by him. The treatise is not 
attributed to him in the manuscript and the fact that the author of the treatise gives the 
working-out of an example in numerical terms seems utterly unlike al-K¥h•.

34. Discussed in Sayili 1956, and recently in Rashed 1999.

35. Hindu-Arabic, sexagesimal, and the so-called “finger arithemetic.”

36. Number 13 in Sezgin’s list of his works. (Sezgin 1974, 319.)
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IV

Numbers, Geometry, and Architecture





§1  Preliminaries

1.1  Introduction

One of the most impressive achievements in Islamic mathematics is the devel-
opment of general methods for constructing magic squares. A magic square of 
order n is a square divided into n2 cells in which different natural numbers must 
be arranged in such a way that the same sum appears in each of the rows, col-
umns, and two main diagonals (figures 7.1 and 7.2); mostly, the n2 first natural 
numbers are placed, and then the constant sum amounts to 1

2
n(n2 + 1), the n-th 

part of the sum of the natural numbers from 1 to n2. If, in addition to this basic 
property of simple magic squares, the square remains magic when the borders 
are successively removed, it is called a bordered square (figure 7.3). If the sum 
in any pair of complementary diagonals (i.e., pairs of parallel diagonals lying 
on each side of a main diagonal and having together n cells) shows the constant 
sum, the square will be called pandiagonal (figure 7.4).

Squares are usually divided into three categories: squares of odd 
order—also called odd squares—(n = 2k + 1, k natural); evenly-even squares 
(n = 4k); oddly-even squares (n = 4k + 2). There are general methods that make 
it possible to construct squares of any order from one of these three categories. 
Except for the smallest possible order, n = 3, there are numerous possibilities 
of forming magic squares of any given order. There may be, however, some 
limitations concerning additional magical properties; for instance, bordered 
squares cannot be constructed if n = 4, and there are no pandiagonal squares 
of oddly-even order.

Information about the beginning of Islamic research on magic squares is 
lacking; it may have been connected with the introduction of chess into Persia. 
Initially, the problem was a purely mathematical one; thus, the Arabic ancient 
designation for magic squares is wafq al-a>dåd, that is, “harmonious disposi-
tion of the numbers.” We know that treatises on magic squares were written 
in the ninth century, but the two earliest extant texts date back to the tenth 
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century: the Treatise on the magic disposition of numbers in squares by Abu’l-
Wafå< al-B¥zjån• (940–997 or 998) and a chapter in Book III of >Al• b. A˙mad 
al-An†åk•’s (d. 987) Commentary on Nicomachos’s Arithmetic.1 It appears that, 
by that time, the science of magic squares was already established; bordered 
squares of any order n ≥ 5 could be constructed, while simple magic squares 
could be obtained for small orders.2 Various general methods for the construc-
tion of simple magic squares of odd and evenly-even orders, and also for pan-
diagonal squares of evenly-even orders, were devised in the early eleventh cen-
tury. The science of magic squares can be said to be at its apogee around 1100; 
by that time, the remaining problem of constructing simple magic squares of 
oddly-even order had been solved. From the thirteenth century onwards, magic 
squares become increasingly associated with magic purposes. Consequently, 
some texts merely picture squares and mention their attributes. Some others 
do keep the general theory alive, though often only to enable the reader to 
construct amulets for himself.

Figure 7.2

Figure 7.1

Figure 7.3
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In Europe, interest in magic squares was first aroused toward the end of 
the Middle Ages, when two sets of squares associated with the seven planets 
were learned of through Arabic magic texts (whence the name), but without 
any indication as to their construction. Methods of construction spread east-
ward around the twelfth century toward India and China; and, to a lesser extent, 
toward Byzantium (c. 1300).

It is interesting to note that, from the very beginning of the Islamic stud-
ies on magic squares, attempts were made to consider squares with additional 
conditions, constructed by adapting or modifying the general methods. The 
present study will show how elementary procedures led, already in the tenth 
century, to a highly intricate form of construction.

A magic square of order three filled with the first nine natural numbers 
can only take one form, where the even numbers occupy the corner cells and 
thus surround the area containing the odd numbers (figure 7.5). Since the 
square of order three was the smallest possible and the first to be obtained, 
this property might have given rise to the idea of extending such a separation 
to squares of higher odd order. In this case the odd numbers are to occupy a 
central rhombus with corners meeting the middle of the square’s sides and the 
even numbers will be in the four remaining triangles.

It is easy to obtain a simple magic square in which the even and odd 
numbers are separated thus. Principles of construction were devised at about 
the same time as those for common simple magic squares, probably in the 
early eleventh century, and simplified rules appeared in the centuries that fol-
lowed.3 Concern for distinction by parity is also seen in some eleventh-century 
constructions of squares of even orders, and in one case the odd numbers form 
a kind of hexagon in each quadrant.4 The idea of constructing magic squares 
with separation by parity was therefore common in the eleventh century. The 

Figure 7.4
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same idea already occurs in the tenth century, at a time when general methods 
were only known for bordered magic squares. Now the construction of a bor-
dered square of odd order showing in addition the above-mentioned separation 
between odd numbers and even numbers is much more difficult. A first attempt 
seems to survive in Abu’l-Wafå<’s treatise. A general method of construction 
is explained by al-An†åk•, but the unequal value of his treatise suggests that this 
very elaborate construction did not originate with him. Whoever the author, 
it is one of the gems of the Islamic science of magic squares (or, indeed, of 
Islamic science in general).

There is no specific Arabic denomination for these squares or for their 
construction. I have chosen to call a square thus constructed quadratus mira-
bilis owing to a wonder comparable to that of my countryman Jakob Ber-
noulli three hundred years ago when he discovered the properties of his spira 
mirabilis.

After some preliminaries (§1, 2–4), we shall analyze this construction (§2), 
and this will be followed by the translation of al-An†åk•’s relevant section (§3).

1.2  Construction of Bordered Squares of Odd Orders in the Tenth 
Century

Abu’l-Wafå< and al-An†åk• start by showing how to construct bordered squares 
of any odd order n (n ≥ 5) as follows (figure 7.6, with n = 11).5 Beginning next 
to a corner cell in the outer border, write the first odd and even numbers alter-
nately along the column and row meeting at this corner, and continue as far as 

Figure 7.6
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their middle cells. Write the next (odd) number in the middle cell last reached, 
then put the following number in the corner cell at the other end of the column 
where 1 was placed, the next one (= n) in the middle cell on the other side, the 
following number in the other upper corner cell; and finally arrange the subse-
quent numbers along the remaining column and row, alternately as before, but 
this time choosing to start next to the middle cell of the column. At this point, 
half of the border cells are occupied. Fill each of the remaining blank cells 
with n2 + 1 minus the number in the opposite cell.6 Repeat this procedure until 
the central square of order 3 is reached, and fill it with the remaining numbers 
arranged as in figure 7.5. This completes the construction of the square. Note 
that, with this arrangement, in each row of the successive squares all numbers 
are even except the number in the middle and in each column they are all odd 
except the two numbers at the corners.

1.3  Geometrical Structure of a Bordered Square with Separation

Let the main square have the order n = 2k + 1. The rhombus which is to contain 
the odd numbers consists then of 2k + 1 “rows” and “columns” in which the 
number of cells is alternately k + 1 and k starting with the outer rows and col-
umns. Hence, within the rhombus there is a total of (k + 1)2 + k2 = 2k2 + 2k+ 1 
cells, which is the quantity of odd numbers among the first n2 natural numbers; 
the remaining 2k2 + 2k even numbers will then occupy the four corner trian-
gles, each of which contains 

1
2

k (k + 1) cells. The rhombus itself includes inner 
squares, the largest of which has the order k if k is odd and k + 1 if k is even. 
Consequently, the largest inner square for both n = 4t + 1 and n = 4t + 3 has the 
order 2t + 1, the only difference being that its corner cells are not fully included 
in the first case but are included in the second case (figure 7.7a and 7.7b, for 
t = 2). Consider finally the borders surrounding this largest inner square. The 
quantity of cells they contain which do not lie within the rhombus depends 
upon the form of n. For the p-th border, counted from the one surrounding the 
inner square, it will be

• for order n = 4t + 1: 16p – 4 altogether, and 4p in each row and column (with a 
common corner cell), where p = 1, …, t;

• for order n = 4t + 3: 16p – 12 altogether, and 4p – 2 in each row and column, 
where p = 1, …, t + 1.

The inner square is easy to fill in, following the above-mentioned method 
for bordered squares (figure 7.8): after putting n2+1

2
 (odd) in the central cell, 

write next to a corner cell the number 4t2 + 1 when n(≥ 9) has the form 4t ± 1, 
and continue as explained above but using odd numbers only. With the comple-
ments placed in the remaining blank cells, the inner square becomes a bordered 
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magic square, occupied by a continuous sequence of odd numbers. Thus far 
our two tenth-century authors proceed in the same way. From now on, however, 
they take a very different approach.

1.4  Abu’l-Wafa<’s Construction

After completing the inner square as above, Abu’l-Wafå< suggests using for the 
remaining part the arrangement obtained by the method for bordered squares 
but omitting those numbers which do not satisfy the requirements of parity 
and those which have already been used for the inner square (figure 7.9; cf. 

Figure 7.7a

Figure 7.7b
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figure 7.6). The blank cells are then filled with the remaining numbers, with 
due consideration to parity and the amount needed to complete the magic sum. 
(One possibility is seen in figure 7.10.)

But this procedure does not resolve the main problem, which resides in 
the increasing complexity of the computations as the order increases: in the 
columns outside the rhombus and in the rows inside it most of the cells will 
remain empty because of the unequal distribution by parity mentioned at the 
end of §1.2 (and seen in figure 7.6). To sum up, this (apparently) early approach 

Figure 7.8

Figure 7.9
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does not meet the fundamental requirement of methods for constructing magic 
squares, which is to leave no room for uncertainty in placing the numbers once 
the order is known.

§2  Direct Construction

2.1  Placing the Remaining Odd Numbers in the Rhombus

The method reported by al-An†åk• is reminiscent of, and no doubt inspired 
by, the method for common bordered squares described in §1.2, the main dif-
ference being the points of departure in the border of the rhombus. Al-An†åk•’s 
method is valid for any rhombus, irrespective of the parity of k in the order 
n = 2k + 1 of the main square. It should also be noted that for any two consecu-
tive orders n = 4t ± 1 the arrangement of the remaining smaller odd numbers 
(1 to 4t2 – 1) in the corner triangles of the rhombus will be the same.

To write these numbers in the rhombus, put 1 next to (say) the lower left 
corner cell of the inner square, 3 next to its upper left corner cell and then alter-
nate the next odd numbers along the border row and column of the rhombus as 
far as the corner cells. Leave these blank and fill in the other corner cells, first 
the lower cell and then the right cell. The subsequent numbers are placed alter-
nately along the other border row and column, taking the corner cell just filled 
as point of departure and stopping at the sides of the inner square.7 The process, 
which is repeated in the subsequent borders, ends when only two cells are left 
(one in each of the main diagonals of the rhombus); the lower cell should be 
filled in first, then the right cell. After the complements have been written in, 

Figure 7.10
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the rhombus is complete, and no odd number is left (figures 7.11 and 7.12, with 
orders of the form 4t ± 1).

2.2  Placing the Even Numbers: Preliminaries

a) Required sum in each Border

The magic sum being 1
2

n(n2 + 1), we may compare the sum in m cells already 
filled in with the sum they should contain on the average, namely 1

2
m(n2 + 1).

(We shall refer to this hereafter as the “sum due” for m cells.) If the odd num-
bers are arranged in the rhombus as above, each upper border row of the main 
square shows an excess over the sum due, and so does each of its left col-
umns, while the corresponding opposite rows and columns, being filled with 
complements, show a deficit of the same amount. For the p-th upper border 
row, counted from the border surrounding the inner square, the excess Gp is as 
follows:

• For order n = 4t + 1:

Gp = 8pt + 4, thus

G1 = 8t + 4

Figure 7.11
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G2 = 16t + 4
G3 = 24t + 4
G4 = 32t + 4

…

For the left columns, the excesses are each 2 less than the corresponding 
excesses for the rows; they are therefore

G 'p = 8pt + 2, thus

G '1 = 8t + 2
G '2 = 16t + 2

…

• For order n = 4t + 3, the excess Dp is:

Dp = 8(p – 1)(t + 1) + 4 for the p-th upper row, thus

D1 = 4
D2 = 8(t + 1) + 4
D3 = 16(t + 1) + 4
D4 = 24(t + 1) + 4

Figure 7.12
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…

and for the p-th left column, the excess is:

D 'p = 8(p – 1)(t + 1) + 2, thus

D '1 = 2
D '2  = 8(t + 1) + 2

…

We have already determined the quantity of even numbers needed for 
each border row and column (§1.3) and have now found the excess or deficit in 
each incomplete border row and column after placing the odd numbers. Thus 
we may calculate the sum of the even numbers to be placed in each border row 
or column: this is the sum due ( n2+1

2
 multiplied by the number of empty cells 

left in each incomplete border row or column) reduced or increased by the 
excess or deficit G or D.

b) Placing the even numbers: basic rules

Let us consider the set of even numbers to be placed. For any order n = 2k + 1, 
there is an even quantity 2k2 + 2k of even numbers: k (k + 1) smaller ones (less 
than n2+1

2
) and their k (k + 1) complements. Since k (k + 1) is even, all these 

numbers can not only be aligned vertically in pairs of complements but also 
grouped horizontally by pairs, as follows:

 2    4   ; … ; n2–8j+3
2

n2–8j+7
2

 ;  …  ; n2–5
2

n2–1
2 

 ;

n2 – 1  n2 – 3 ; … ; n2+8j–1
2

n2+8j–5
2

 ;  …  ; n2+7
2

n2+3
2

 .

We shall henceforth call “dyad” any such pair of even numbers and char-
acterize it by the value of j (j = 1, 2, …, 1

2
k(k+1) for those of the upper line, 

from right to left).
The method for the initial elimination of the excesses and deficits and the 

subsequent filling of the remaining empty cells rests on the appropriate choice 
and arrangement of these dyads.

• The initial elimination of the excesses and deficits (referred to hereafter as 
equalization) relies for n = 4t + 1 and n = 4t + 3 on four rules:

I. Writing the number a in one side (row or column) and a + 2s in the 
other and then filling the opposite cells with the complements will pro-
duce in the side of a the sum

a + [n2 + 1 – (a + 2s)] = n2 + 1 – 2s

and in the other side
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[n2 + 1 – a] + a + 2s = n2 + 1 + 2s (figure 7.13).

This rule enables us to eliminate any difference 2s by using two even num-
bers which differ by 2s. It should be noted, however, that taking s ≠ 1 “breaks” 
two dyads, since this uses only one element of each, which is a situation to 
be avoided if possible, as we shall see below. The following particular cases, 
which only involve dyads that have been left complete, are mainly used by al-
An†åk• for the equalization:

II. Taking any dyad of smaller numbers and writing its elements in 
opposite sides, then filling the opposite cells with the complements, will 
produce the smallest difference possible, 2, in the form of a deficit in the 
side containing the smallest element (figure 7.14).

III. Placing two consecutive dyads of smaller numbers around the border, 
then filling the opposite cells with the complements, will produce a dif-
ference of 4, in the form of a deficit in the row and column containing 
the first dyad (figure 7.15).

IV. Writing the j-th dyad of smaller numbers in one side and their com-
plements in the opposite side will produce a deficit of 8j – 4 in the side 
of the j-th dyad and a corresponding excess in the other (figure 7.16). If 
this dyad is written in the corner cells, the same will hold, but in addi-
tion there will be a deficit of 2 in the perpendicular side containing the 
smallest element, and a corresponding excess in the opposite side (figure 
7.17).

The application of these four rules allows us to eliminate any difference 
of the form 8u + v with v = 0, 2, 4, 6, thus all the possible differences, and 
without breaking dyads unless we apply the first rule.

• From rule I we further deduce a “neutral” arrangement, which produces the 
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sum due, without any excess or deficit:

V. Consider two pairs of numbers having an equal difference: a, a + 2s; 
b, b + 2s. Writing the two extreme terms in one side and the two middle 
terms in the other, then filling the opposite cells with the complements, 
will produce in the two sides the sum 2(n2 + 1), which is the sum due for 
four cells (figure 7.18). Here again, we should choose s = 1, so that the 
two pairs of numbers are two (separate or consecutive) dyads.

Thus, if by applying rules I–IV we are able to fill a certain (even) number 
of cells in each border row or column, including the cells in the corners, so as 
to arrive at the sum due for the number of cells already filled; and if the number 
of remaining (empty) cells in this row or column is divisible by 4 while the set 
of still available even numbers consists of dyads, these cells can be easily filled 
using rule V. If the method is to be generally applicable, the first step (the equal-
ization process) must be uniform and involve the smallest possible number of 
cells so as to apply to all orders, from the smallest one possible.

This is the method followed by al-An†åk•. In order to show that this 
method is indeed generally applicable, it will be described below in modern 
symbolism.

3.3  Placing the Even Numbers for the Order n = 4t + 1 (t ≥ 2)

a) Rows

We shall consider only the upper rows, since the corresponding lower rows will 
be occupied by the complements of the numbers in the upper rows.

As we have seen (§1.3), in each border row and column there is a number 
of cells remaining empty which is divisible by 4. Since the differences from the 
sum due must be eliminated by filling the smallest possible number of cells, 
including those at the corners, and there must remain a number of empty cells 
divisible by 4, we shall equalize each border row and column by means of four 
or at most eight numbers. Al-An†åk•’s first step is thus to fill four cells in each 
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row, including the two cells at the corners, so as to leave some excess for p ≥ 2 
but none in the row closest to the inner square since it has only four empty 
cells; the next step will be to eliminate the remaining excess by means of four 
other numbers, thus leaving for p ≥ 3 a number of empty cells divisible by 4 
and no excess or deficit. The four numbers to be initially placed are chosen as 
follows (see figure 7.19 — n = 17, thus t = 4 —, numbers in Roman type).

• First (lowest) upper row (p = 1): Put

n2–5
2

 in the left corner

n2–1
2

 in the right corner.

These numbers form the largest dyad of smaller numbers (corresponding 
to j = 1). Since their sum is n2 – 3 instead of the sum due n2 + 1, while the initial 
excess was G1 = 8t + 4, the remaining excess is 8t. By rule I we can eliminate 
this excess by means of any two even numbers with a difference of 8t. We 
may, for instance, put the smallest even number 2 in the upper row and 2 + 8t 
in the opposite side. The first upper row will then contain as even numbers, in 
addition to the ones in the corner cells, 2 and n2 + 1 – (2 + 8t), and will thus no 
longer show an excess.

• For the other rows (p ≥ 2), the initial excess is Gp = 8pt + 4. This may be, at 
least partly, compensated using an appropriate dyad. Rule IV will enable us to 
determine which j will suit. Let us thus put

8pt + 4 = 8j – 4.

Since we have to eliminate the excess by means of either four or eight 
numbers (but in any case not two), we take j = pt (and not j = pt + 1) and put 
the pt-th dyad of smaller numbers

n2–8pt+3
2

,     n2–8pt+7
2

in the p-th upper row. Then the remaining excess in each upper row is 8.
Above, we used the first dyad (j = 1) for the first border. Let us accord-

ingly take the p-th dyad and put its smaller element in the upper left corner of 
the p-th border and the larger element in the lower corner in the same column. 
Since the sum of this smaller element, namely

n2–8p+3
2

,
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and the complement of the larger element, namely

n2+8p–5
2

,

is (n2 + 1) – 2, the excess left in each upper p-th row (p ≥ 2) will be equal to 6, 
and 4(p – 1) cells in this row remain empty.

b) Columns

We shall consider only the left columns, since the right columns are to be filled 
with the complements of the numbers in the left column. Now the corner cells 
are already occupied; we shall therefore eliminate the differences in the p-th 
column by means of six numbers for p ≥ 2 but only two for the case p = 1,
where just two empty cells are left. This is done as follows (see figure 7.19, 
numbers in italics).

Figure 7.19
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• First column (p = 1): Since the corner cells have been occupied by

n2–5
2

  and  n2+3
2

,

with sum n2 – 1, the initial excess G '1 = 8t + 2 has been reduced to 8t. Proceeding 
as for the first row, we put 4 in the left column and 4 + 8t in the right column. 
Thus the first left column, now completed by 4 and n2 + 1 – (4 + 8t), has no 
excess, and with the choice of 4 there are no more broken dyads: the dyad 
consisting of the smallest numbers 2 and 4 (corresponding to j = 2t2 + t) and 
the associated dyad formed by 2 + 8t and 4 + 8t (corresponding to j = 2t2 – t) 
have both been used.

• Other columns (p ≥ 2): As we know, the initial excess is G 'p = 8pt + 2. Now the 
two numbers in the corners are

n2–8p+3
2

  and  n2–8p+7
2

,

with sum n2 – 8p + 5, and so the excess remaining in each left column has 
become 8pt + 2 – 8p + 4 = 8p(t – 1) + 6. By rule IV, we can reduce each of these 
excesses to a constant: putting

8p(t – 1) + 6 = 8j – 4,

we choose j = p(t – 1) + 1 and write the dyad

n2–8(pt–p+1)+3
2

,        n2–8(pt–p+1)+7
2

in the p-th left column (p ≥ 2). Thus the excesses are now reduced to the 
constant amount of 2.

Remark: After placing the odd numbers in a square with order n = 4t + 1, 
t ≥ 2, we were left with t unfinished borders, numbered p = 1, …, t. Now we 
have seen that all the dyads of smaller even numbers initially at our disposal 
can be written as

n2–8j+3
2

,   n2–8j+7
2

         with j = 1, …, 2t2 + t.

Among these dyads, the following ones have been used:

(i)  j = 1 (in the corner cells of the first upper row, thus for p = 1)
(ii)  j = 2t2 ± t (elsewhere in the first border, thus for p = 1)
(iii)  j = p, that is, j = 2, 3, …, t (in the left corner cells for p ≥ 2)
(iv)  j = pt, that is, j = 2t, 3t, …, t2 (in the upper rows for p ≥ 2)
(v)  j = p(t – 1) + 1, that is, j = 2t – 1, 3t – 2, …, t2 – t + 1 (in the left 
columns for p ≥ 2).
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Each of the dyads used corresponds to exactly one j among these 3t 
values, none of which is identical to another. Thus none of the dyads used can 
occur twice.

c) Completing the square

There is now left in each row and column (for p ≥ 2) a number of empty cells 
divisible by 4. Furthermore, the excess is 6 for each incomplete upper row and 
2 for each incomplete left column (figure 7.20). The set of remaining even 
numbers consists solely of dyads or also tetrads of consecutive terms; for the 
numbers placed previously always formed dyads, which were either grouped 
or separated by one or two (or more) unplaced dyads. The remainder of each 
border may now be filled in as follows.

(1) Take, according to rule III, one tetrad of consecutive even numbers (a, 
a + 2, a + 4, a + 6) and place them (anti-clockwise) around the border, starting 
with the top row, and then write the respective complements. This will increase 
the sums in the border rows and columns as in figure 7.15. Thus, each of the 
former excesses and deficits is replaced by ±2 (figure 7.21).

(2) Take any two (consecutive or separate) dyads (b, b + 2, g, g + 2) and, fol-
lowing rule II, write each dyad in a pair of opposite sides, with the smaller 
elements on the side of the excesses, and write the complements. This will 
eliminate the previous differences, since the sums in the border rows and col-
umns are increased as seen in figure 7.14. Thus, the rows and columns of the 
borders now show the sum due for the quantity of cells already filled in: that is, 
as many times 1

2
(n2 + 1) as there are occupied cells; and, for p ≥ 3, in each row 

and column the number of remaining empty cells is divisible by 4.

(3) Take any two (consecutive or separate) dyads (d, d + 2, e, e + 2) and, fol-
lowing rule V, place the extreme terms in one row or column and the middle 
terms in the opposite row or column. After the complements have been written 
in, this will produce the sum due for four cells. This enables us to fill the empty 
cells with the numbers which have not yet been used.

The above steps are seen in figure 7.22 (where the borders, starting 
from the outer one, have been equalized successively, using the first two steps 
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described above, by means of the available numbers ranging discontinuously 
from 6 to 56; and the third step was applied first to the rows and then to the 
columns). The completed squares of the smaller orders 9 and 13 are also shown 
in figures 7.23 and 7.24. Al-An†åk• restricts himself to constructing the square 
for order 9.

Remark: These three final steps appeared in the tenth century for the con-
struction of bordered squares of even order, which implies that they were not 
specifically devised for the quadratus mirabilis.

2.4  Placing the Even Numbers for the Order n = 4t + 3 (t ≥ 1)

a) Rows

We shall again consider only the upper rows, since the lower rows are to be 
filled with the complements of the numbers in the upper rows.

As we have seen (§1.3), the number of empty cells is of the form 4p – 2. In 
order to eliminate the difference from the sum due, we wish to fill the smallest 

Figure 7.22
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possible number of cells, including those at the corners, and leave a number of 
empty cells divisible by 4. Thus we may ask whether a single dyad placed in the 
upper corner cells can directly produce the sum due. Since the initial excess is 
Dp = 8(p – 1)(t + 1) + 4, we apply rule IV and put 8(p – 1)(t + 1) + 4 = 8j – 4. 
Thus, Dp will be eliminated at once if we take j = (p – 1)(t + 1) + 1 = pt + p – t. 
We therefore write in the corner cells of the p-th upper row (p ≥ 1) the dyad

n2–8(pt+p–t)+3
2

,        n2–8(pt+p–t)+7
2

,

Figure 7.23

Figure 7.24
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with the smaller term in the column with the excess (see figure 7.25, numbers 
in Roman type). Thus we shall choose

for p = 1:   n2–5
2

,   n2–1
2

;

for p = 2:   n2–2n–7
2

,   n2–2n–3
2

;

for p = 3:   n2–4n–9
2

,   n2–4n–5
2

;

and so on.

b) Columns

We shall again consider only the left columns, for the right columns are to be 
filled with the complements of the numbers in the left columns.

Since the corner cells are already occupied, the number of remaining 
empty cells is a multiple of 4 (for p ≥ 2). We shall therefore eliminate the excess 
left in the p-th column by means of four numbers (see figure 7.25, numbers 
in italics). Since the initial excess before the corner cells were filled was D'p = 
8(p – 1)(t + 1) + 2 and they are now occupied by

Figure 7.25
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n2–8(pt+p–t)+3
2

,     n2+8(pt+p–t)–5
2

,

with sum (n2 + 1) – 2, the remaining excess is 8(p – 1)(t + 1) = 8(pt + p – t – 1).
As we must place four numbers in each column, it might be possible to 

start by choosing a dyad which leaves an excess of the form 8u ± 4 and then 
—by rule IV— another dyad to eliminate the remaining difference. Now we 
have already used the first dyad for the first border; if we use accordingly the 
p-th dyad for the p-th border (p ≥ 2) and write it in the right column, this 
column will contain the smaller numbers

n2–8p+3
2

,     n2–8p+7
2

and the left p-th column the corresponding p-th dyad of larger numbers

n2+8p–1
2

,     
n2+8p–5

2 .

As a result, the previous excess in the p-th left column (p ≥ 2) has now 
increased to 8(pt + p – t – 1) + 8p – 4 = 8(pt + 2p – t – 1) – 4. Following rule 
IV, we put 8(pt + 2p – t – 1) – 4 = 8j – 4 and take accordingly j = pt + 2p – t – 1; 
we therefore write in the p-th left column the dyad

n2–8(pt+2p–t–1)+3
2

,     n2–8(pt+2p–t–1)+7
2

.

Thus, we have reached a point where for each column the cells filled in 
show the sum due and the number of empty cells left (for p ≥ 3) is divisible 
by 4.

Remark: After placing the odd numbers in a square with order n = 4t + 3, we 
are left with t + 1 incomplete borders, numbered p = 1, …, t + 1. Of all the 
dyads of smaller even numbers initially at our disposal, that is,

n2–8j+3
2

,    n2–8j+7
2

    with j = 1, …, 2t2 + 3t + 1,

the following ones have been used:

(i)  j = pt + p – t, that is, j = 1, t + 2, 2t + 3, …, t2 – t – 1, t2, t2 + t + 1 (in the 
corner cells of the upper rows, thus for p ≥ 1)

(ii)  j = p, that is,  j = 2, 3, …, t + 1 (in the right columns for p ≥ 2)

(iii)  j = pt + 2p – t – 1, that is, j = t + 3, 2t + 5, 3t + 7, …, t2 + t – 1, t2 + 2t + 1 
(in the left columns for p ≥ 2).

Each of the dyads used corresponds to exactly one j among these 3t + 1 
values, none of which is identical to another. Thus none of the dyads used can 
occur twice.
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c) Completing the square

Since all the rows and columns contain the sum due for the quantity of occu-
pied cells and the number of remaining empty cells is divisible by 4, we shall 
conclude by applying rule V with the remaining dyads. The result is shown in 
figure 7.26 (where the tetrads of available even numbers have been used first 
for the rows, starting with the top row, then for the columns). For the smaller 
orders n = 7 and n = 11 see figures 7.27 and 7.28. Both squares are constructed 
by al-An†åk•.

2.5  Placing the Even Numbers for the Order n = 5

As al-An†åk• mentioned, the above construction for the case n = 4t + 1 is 
invalid for t = 1. (The numbers to be used in the corner cells appear elsewhere 
in the border.) Thus the square he presents (figure 7.29) is not constructed 
according to these rules. Abu’l-Wafå<’s simplification is of no help either. The 
square of order five he refers to is presumably the same as al-An†åk•’s (the only 
extant manuscript omits the figures altogether). Abu’l-Wafå< does, however, 
point out that if we put 2 in one of the upper corner cells, the other one can be 

Figure 7.26
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occupied by 4, 6, 8 or 12. There are in fact twenty-one possibilities, which are 
listed below (see figure 7.30).

• Take a = 2 and
b = 4 with 14, 20 in the upper row and 8, 10 in the left column, or with 

16, 18 in the upper row and 6, 12 in the left column (as in figure 7.29);
b = 6 with 10, 22 and 8, 12 or with 14, 18 and 4, 16;
b = 14 with 4, 20 and 10, 18 or with 8, 16 and 6, 22;
b = 18 with 4, 16 and 12, 20 or with 6, 14 and 10, 22;
b = 20 with 4, 14 and 16, 18 or with 8, 10 and 12, 22.8

• Take a = 4 and
b = 6 with 12, 18 (upper row) and 2, 16 (left column).

Figure 7.27

Figure 7.28
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• Take a = 6 and
b = 10 with 2, 22 and 8, 12;
b = 22 with 2, 10 and 14, 18.

• Take a = 8 and
b = 2 with 14, 16 and 4, 6;
b = 10 with 2, 20 and 4, 14;
b = 16 with 2, 14 and 4, 20.

• Take a = 12 and
b = 4 with 8, 16 and 2, 6.

• Take a = 14 and
b = 8 with 2, 16 and 4, 6;
b = 18 with 2, 6 and 4, 16.

• Take a = 16 and
b = 8 with 4, 12 and 2, 6;
b = 18 with 2, 4 and 6, 12.

§3  Description of the Construction by al-Ant.aki

Al-An†åk•’s description of the construction leading to the quadratus mirabilis 
is very concise, but sufficient to confirm our mathematical reconstruction. We 
think it in any case appropriate to add a translation of the relevant text. This 
is the second part of the section in which al-An†åk• deals with squares of odd 
orders. (In the first part, he explains the construction of bordered squares sum-
marized in §1.2.)

Consider the odd numbers from 1 to the last of those which will be in the 
square. Arrange them inside the square so as to form the shape of a rhombus 
within the large square, thus leaving (empty) cells forming triangles with a 
same number of cells on each side. Write there the even numbers from 2 to 
the last to be found in the square in such a way that the sums be equal every-
where. Then the odd numbers will be inside the larger square in a rhomboid 
figure and the even numbers will surround them on the four sides, as is 
shown in this figure (figure 7.31).

Figure 7.29 Figure 7.30
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The way to place the odd numbers is the following.9 Take 1 and the 
last term belonging to this square, namely its largest number, then 3 and the 
number preceding the largest one, and so forth until you reach its middle 
term. You put this middle term in the central cell of the square. You put its 
adjacent odd terms in the cells where you placed the two of the nine terms 
which were adjacent to the middle term in the square of 3 by 3 (figure 7.32). 
You do the same for the remaining numbers until the square of 3 by 3 is 
completed, if this is the object of your treatment, or you do the same for 
the squares of 5 by 5, 7 by 7, 9 by 9, if this is the object of your treatment. 
You will always do this until the whole square contained by the rhombus is 
completed.

This being done,10 take the two odd terms reached, and put the smaller 
one in the middle cell of the first left-hand line and its complement facing 
it in the first right-hand line, the next small number in the middle cell of 
the lower line, and facing it in the upper line its complement. Take then the 
two terms reached and put the smaller one below, next to the middle cell 
on its left, and, facing it above, its complementary term. Put then the next 
small term on the left, just above the middle cell, and facing it on the right 
its complement. Then put the next small number in the middle cell of the 
second left-hand line, and facing it in the second right-hand line its comple-
ment. Then put: the small number following this term in the middle cell of 
the second lower line, and facing it its complement; then the following small 
term next to the middle cell in the first upper line, and facing it in the first 
lower line its complement; the following small number in the second right-
hand line, below the middle cell, and facing it on the left its complement. 
When this is done for the two squares (of order 7 and 9), 1 and the last term 
are reached and the placing has been performed in the desired way. In the 
case of the square of 9, the treatment is then completed.

In the case of the squares of 11 and 13,11 do the same until the above 
arrangement is attained. Then you write the small number following the 
small number placed lastly in the third cell from the middle cell,12 on the 
left of it, in the first lower line, and facing it its complement. Then you put 
the following small number in the third cell above the middle cell in the first 
left-hand line, and its complement facing it on the right. Then you put the 
subsequent small term in the second lower line, next to the middle cell, and 
its complement facing it above. Then you put the subsequent small term next 
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to the middle cell in the second left-hand line, and its complement facing it 
on the right. Then you put the small term reached in the middle cell of the 
third left-hand line, and facing it its complement. Then you put the subse-
quent small term in the middle cell of the third lower line, and facing it above 
its complement. Then you put the subsequent small term next to the middle 
cell of the second upper line, and facing it below its complement. Then you 
put the subsequent small number in the second right-hand line, next to the 
middle cell, and facing it on the left its complement. Then you put the sub-
sequent small number in the first upper line, in the third cell from the middle 
cell, and facing it below its complement. Then you put the subsequent small 
number in the third cell from the middle cell in the first right-hand line, and 
facing it on the left its complement. When this is done, the odd numbers are 
placed in these two squares, starting from the center.

In the case of the squares of 15 and 17, you do the same as for the 
square of 13 until you reach the third border. Then you put the subsequent 
small number in the fourth cell from the middle one in the first lower line, 
and facing it its complement; then the subsequent number in the fourth cell 
from the middle cell in the first left-hand line, and facing it its complement; 
then the subsequent number in the third cell from the middle cell in the 
second lower line, and facing it its complement; then the subsequent number 
in the third cell from the middle cell in the second left-hand line, and facing 
it its complement; then you put the subsequent number next to the middle 
cell in the third lower line, and facing it its complement; then the subsequent 
number next to the middle cell in the third left-hand line, and facing it its 
complement; then the subsequent number in the middle cell of the fourth 
left-hand line, and facing it its complement; then the subsequent number in 
the middle cell in the fourth lower line, and facing it its complement; then 
the subsequent number next to the middle cell in the third upper line, and 
facing it its complement; then the subsequent number next to the middle cell 
in the third right-hand line, and facing it its complement; then the subsequent 
number in the third cell from the middle cell in the second upper line, and 
facing it its complement; then the subsequent number in the third cell from 
the middle cell in the second right-hand line, and facing it its complement; 
then the subsequent number in the fourth cell from the middle cell in the 
first upper line, and facing it its complement; then the subsequent number in 
the fourth cell from the middle cell in the first right-hand line, and facing it 
its complement. When this is done, you have finished with the odd numbers 
for these two squares in the desired way. If you wish to proceed with larger 
squares, continue placing step by step in the same way.

At this point we find that the squares are divided into classes requir-
ing each its own treatment for the arrangement of the even numbers in the 
corners. There are those of (order) 5, 9, 13, 17, and so forth by steps of 4; and 
those of (order) 7, 11, 15, 19, and so forth by steps of 4.
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For constructing that of 5 and those of the same kind (observe this).13 

The remaining empty cells in the first border, which surrounds the inner 
square, are the four at the corners and eight adjacent to them, two on each 
side; in the second border, the empty cells are the four at the corners and 
twenty-four cells adjacent to them. It will always be like that: each border has 
16 angular cells more than the border below.

For the square of 5 only, the treatment fails: it requires a different 
method. For the squares belonging to the same class, the situation is the fol-
lowing.

Square of 9.14 After placing the odd numbers as indicated, the first 
upper line is in excess over the sum due by 20, the lower line is in deficit by 
20; the first right-hand line is in excess over the sum due by 18, and the left-
hand line is in deficit by 18. The second upper line is in excess by 36, and the 
lower line is in deficit by the same amount; the second right-hand line is in 
excess by 34, and the left-hand line is in deficit by the same amount.

Square of 13. The first upper line is in excess by 28, and the lower line 
is in deficit by the same amount; the first right-hand line is in excess by 26, 
and the left-hand line is in deficit by the same amount. The second upper line 
is in excess by 52, and the lower line is in deficit by the same amount; the 
second right-hand line is in excess by 50, and the left-hand line is in deficit 
by the same amount. The third upper line is in excess by 76, and the lower 
line is in deficit by the same amount; the third right-hand line is in excess 
by 74, and the left-hand line is in deficit by the same amount. Similarly for 
the others.

In the square of 9, a second line has 16 more than the line before. In 
the square of 13, a first line has 8 more than the first of the square of 9, then 
each line has 24 more than the line before. In the square of 17, a first line 
has 8 more than the first of the square of 13, then each line 32 more than the 
line before. Each line will always have more than the line before in the same 
manner.

“Excess over the sum due” means the following. The required amount 
for the central cell equals the number in the middle. Thus each cell of the 
square of 5 has a sum due of 13. Therefore you will add the odd numbers in 
each line and divide the result by the number of cells filled; if the quotient 
is less than the middle term, the sum in the cells will be less than the sum 
due by the product of this deficit and the number of cells; analogously if the 
quotient is in excess. So the subsequent placing of the even numbers in the 
empty cells of each line must be such that it compensates the deficit, if any, 
or falls short by the amount of the excess, if any. We shall show this in the 
appropriate place, when explaining how to deal with the even numbers.

For constructing the square of 7 and the others of this class (observe 
this).15 The remaining empty cells are as follows. In the first border, which 
surrounds the inner square, there are the four cells at the corners; in the 
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second border, there are the cells at the corners and 16 cells adjacent to them, 
4 on each side; in the third border, there are the cells at the corners and 32 
cells adjacent to them. And so forth always: each border has 16 angular cells 
more than the border below.

In this class of squares, the first upper line has an excess of 4 over the 
sum due, and the lower line has a deficit of the same amount;16 the first right-
hand line has an excess of 2 over the sum due, and the left-hand line has a 
deficit of the same amount.

The second upper line of the square of 7 has an excess of 20 over the 
sum due, and the second right-hand line an excess of 18.

In the square of 11, the second upper line has an excess of 28 over the 
sum due, the second right-hand line an excess of 26, the third upper line an 
excess of 52, the third right-hand line an excess of 50, and all the opposite 
lines have a deficit equal to the excess.

Square of 15. The second upper line exceeds the first upper line by 32, 
the third the second by 32.

And so forth for the others: the excess increases each time by 8.17

Thus, writing the even numbers in the lines must be done so as to 
equalize them, and we must then search for numbers the sum of which will 
produce the required excess or the required deficit.

To determine this, you associate 2 and the last even term, then 4 and 
the corresponding opposite term, and so forth until you reach the two middle 
terms of these even numbers.18 This being done, you see that if the last small 
number and the preceding one are placed on one side, and facing them their 
complements, the side containing the two small numbers will be less than 
the sum due by 4, and the other more by 4; placing the next two numbers, 
the differences will be 12 and 12, with the next two numbers 20 and 20, 
then 28, 36, 44, 52, 60 and so forth to the numbers 4 and 2.19 Now you see 
that the borders which require the placing of even numbers have indeed, on 
two of their sides, this succession of excesses and deficits, namely 4, [12,] 
20, 28, 36 and so forth. Thus, bringing the excess of these even numbers to 
where the deficit is will equalize the borders on two sides, and the other two 
sides will need to be equalized with the remaining even numbers (by means 
of what follows).

Taking four (consecutive) small numbers, the sum of the first and the 
second has a certain deficit, and the sum of the third and the fourth a deficit 
smaller by 8. Then adding the first and the fourth you find that they have a 
deficit equal to half the sum of the two deficits; adding similarly the second 
and the third gives the same result. For instance, the sum of the last two small 
numbers20 is less than their sum due by 4, and the sum of the two preceding 
numbers less by 12; thus, adding the last and the first, and the second and the 
number before, will produce a deficit of 8, that is, half the sum of 12 and 4. 
The knowledge of this is necessary, for you will use it constantly.21
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When the first small number, or any arbitrary small number, is written 
on one side and the subsequent number is written on the other side, and the 
two large numbers which are their complements are written on the opposite, 
the side where the first small number is written will be less than the sum due 
by 2, whereas the other side will be in excess by 2.22 If some small number 
is written on one side and on the other side the third small number counted 
from this one is written, the side containing the first small number will be 
less than the sum due by 4. And so forth: whenever the distance between 
them is increased by one number the deficit is increased by 2.23 For instance, 
putting 4 on one side and 6 on the other side, and facing them their comple-
ments, the side containing 4 will be less than the sum due by 2 and the side 
containing 6 will be more by 2. Writing 8 instead of 6 and doing the same, 
the side containing 4 will be less by 4 and the side of 8 more by 4, and the 
amount will increase together with the interval between the two numbers.

Placing four numbers in the corners, two in consecutive corners and 
their complements in the corners diagonally opposite, if the two consecutive 
small numbers are on the upper side this side will be less than the sum due by 
4 if they are the last two, by 12 if they are the two previous numbers, and so 
forth with a regular increment of 8 until 2 and 4 are reached. The right-hand 
sides will have a uniform difference, excess or deficit, of 2 from the sum due, 
without any increment or diminution.24

All this must be understood: it will be necessary for the writing of the 
even numbers in this class of squares.

Examples of treatments for all that we have explained.

Treatment for the square of 5 by 5 (figure 7.33).25 You put the odd numbers in 
the inner square of 3 as explained. Those remaining are 1, 25, 3, 23. You put 
1 in the lower middle cell and 25 facing it above, 3 in the middle left-hand 
cell and 23 on the opposite side, on the right. Next, you put 2 in the upper 
right-hand corner and facing it diagonally, in the lower left-hand corner, its 
complement, namely 24. You put 4 in the upper left-hand corner and facing it 
diagonally, in the lower right-hand corner, its complement, namely the even 
number 22. You put 6 on the right side and its complement, 20, facing it on 
the left. You put 10 and 8 below, 12 on the right, and you put facing each its 
complement.

Passing from 5 to 9, 13, 17 and those of this kind, put the last small 
even term in the upper left-hand corner of the first border, that is, the border 
following the inner square filled with odd numbers, and facing it diagonally, 
in the lower right-hand corner of the first border, its complement.26 Put the 
preceding small term in the upper right-hand corner of the first border, and 
facing it diagonally, in the lower left-hand corner, the term which is its 
complement. When this is done, you find that the excess of the upper line is 
16,27 the excess of the right-hand line 16, thus the excesses of the upper line 
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and the right-hand line are the same. Put then 2 in the upper line; consider the 
excess of the upper line, take its half, and count after 2 as many small even 
numbers as this half, and put the number reached in the lower line. Put facing 
each of these two numbers its complementary term. Put 4 on the right side;28 
then count after 4 as many small numbers as half of the excess, and put the 
number reached in the left-hand line. Put facing each of these two numbers 
its complementary term. After doing this all the sides of the first border will 
be equalized for this kind of square.

Put then the two small terms the sum of which is less than their sum 
due by 12 in the right-hand corners of the second border, with the lesser one 
above;29 put in the diagonally opposite corners, on the left, their comple-
ments. Then look for the pair of small numbers such that their sum is less 
than their sum due by an amount equal to the (initial) excess of the second 
right-hand line less 14; put them in the second right-hand line and, facing 
them on the left, their complements. Then look for the pair of small numbers 
such that their sum is less than their sum due by an amount equal to the 
(initial) excess of the upper line less 8; put them in this line and, facing them 
below, their complements.

Put then the pair of small numbers the sum of which is less than their 
sum due by 20 in the right-hand corners of the third border, with the lesser 
one in the upper corner; put facing them diagonally, in the corners of the 
third left-hand line, their complements. Then look for the pair of small num-
bers which have a sum less than their sum due by an amount equal to the (ini-
tial) excess of the third right-hand line less 22; put them in this line, and their 
complements facing them, in the third left-hand line. Then look for the pair 
of small numbers such that their sum is less than their sum due by an amount 
equal to the (initial) excess of the third upper line less 8; you put them in this 
line and, facing them in the third lower line, their complements.

Put then the pair of small numbers such that their sum is less than their 
sum due by 28 in the right-hand corners of the fourth border, with the lesser 
one above, and facing them diagonally on the left their complements. Then 
look for the pair of small numbers such that their sum is less than their sum 
due by an amount equal to the (initial) excess of the fourth right-hand line 
less 30; put them in this line and, facing them in the fourth left-hand line, 

Figure 7.33
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their complements. Then look for the pair of small numbers such that their 
sum is less than their sum due by an amount equal to the (initial) excess of 
the fourth upper line less 8; put them in this line and, facing them below, 
their complements.

Proceed always likewise, with increments of 8 for the deficits in a 
right-hand line and uniform deficits of 8 in an upper line. When this has been 
done, the excess of each upper line over its sum due will be 6, the excess of 
each right-hand line over its sum due will be 2, and the number of remaining 
empty cells will be four cells in each second line, eight in each third line, 
twelve in each fourth line, and so forth by successive additions of four.

Let us now turn our attention to the remaining numbers.30 You take a 
tetrad of small numbers and put the first number in an upper line, the third 
in the opposite line below, the second on the right and the fourth on the 
left, and you put facing each of these four numbers its complement. This 
placing is performed for each border. When this is done, you take a pair of 
small numbers; put the first above, the second below, and facing them their 
complements. Then take another pair; put the first on the left side of the same 
border, the second on the right, and facing them their complements. Do the 
same for all borders. When this is done, each line and its opposite will be 
equalized and none will be in excess.

If there are remaining empty cells, it can be only four facing four, 
eight facing eight, twelve facing twelve (and so forth); they will be equal-
ized by groups of four with available sequences of four numbers, in the way 
explained at the beginning of the section for four numbers of which each 
pair is in progression: you put the first of the first pair and the second of the 
second pair on one side, the second of the first pair and the first of the second 
pair on the facing side, and opposite to each its complement (figure 7.34).

Figure 7.34
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Treatment for 7, 11, 15, 19 and the like.

You put the last of the small even terms in the still empty upper left-hand 
corner of the first border, which surrounds the inner square filled with odd 
numbers, and facing it diagonally, in the lower right-hand corner of the same 
border, its complement. Put the preceding small term in the upper right-hand 
corner of the same border, and, facing it diagonally, in the lower left-hand 
corner, its complement. When this is done the first border is equalized for 
all squares of this kind.31 After that, consider the excess of each upper line 
and look for the pair of small numbers such that their sum is less than their 
sum due by the same amount. Put them in the corners of this line, the lesser 
number on the right, and facing them diagonally below their complements. 
Complete in this way all the remaining corners. When this is done all the 
upper and lower lines will be equalized, and their remaining empty cells will 
be four facing four, and so forth by additions of 4. Each group of four is then 
equalized with four numbers in the way we have explained previously.

We are left with the right-hand lines, which exceed the sum due by 
16, 24, 32, 40, 48, and so forth by increments of 8, and the remaining empty 
cells are four facing four, eight facing eight, and so forth by additions of 4.32 
You then look for a pair of large numbers such that their sum exceeds their 
sum due by an amount which, when added to the excess of the right-hand 
line, equals the deficit of the sum of two small numbers; put then the two 
small numbers on the same side (as the large numbers), and put on the left 
the complements of the four numbers, each pair facing its complements. 
When this is done, each pair of corresponding sides will be equalized, and 
the remaining empty cells will be four facing four, and so forth by successive 
additions of 4. Each group of four is then equalized with four numbers as we 
have explained previously.

Example of the treatment of the right-hand line for the square of 7.

You find that the excess of the upper line is 20 and the excess of the right-
hand line, 18. Putting the two numbers having a sum less than their sum due 
by 20 in the two upper corners, with the lesser one on the right, leaves 16 as 
the excess in the right-hand line. Consider then the two large numbers with 
an excess of 12; for adding 12 to 16, which is the right-hand excess, gives 
an excess of 28, equal to the deficit of the sum of two small numbers. You 
put then the two large numbers on the right, as also the two small numbers 
having a sum less than their sum due by 28, and you put on the left, facing 
each one, its complement (figure 7.35). The treatment is the same for the 
other squares (of this kind) (figure 7.36).
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Notes

1.  For the first text, see J. Sesiano, “Le traité d’Abu’l-Wafå< sur les carrés magiques,” 
Zeitschrift für Geschichte der arabisch-islamischen Wissenschaften, 12 (1998), pp.121–
244; an edition of the second treatise, in MS (Ankara) Saib 5311, fol. 1

r
–36

r
 will be 

published in the same journal.

2.  Although methods for simple magic squares are easier to apply than methods for 
bordered ones, the latter are easier to discover; this explains why they appeared first.

3.  See J. Sesiano, Un traité médiéval sur les carrés magiques, Lausanne 1996, pp. 
35–40.

4.  Ibid., p. 68.

5.  Here, and whenever the original (Arabic) order is from right to left, we have chosen 
to reverse it; the rules for construction have been changed accordingly.

6.  Throughout this study, we call “opposite cells” those at either end of any border row, 
column or main diagonal of a bordered magic square. Such pairs of cells will always 
contain a “smaller” number a (a < n2+1

2
) and its “complement” n2 + 1 – a.

7.  The need to reserve opposite cells in the main square for complements makes it 
impossible to proceed here in exactly the same manner as for a bordered square.

8.  Thus, Abu’l-Wafå< has indeed covered all possibilities for two consecutive corner 
cells when one of these numbers is taken to be 2, as can be seen by considering the 
complements of the last three values of b.

9.  This explains the arrangement in the inner square. See §1.3, in fine.

Figure 7.35

Figure 7.36
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10.  Here begins the arrangement of the remaining odd numbers in the rhombus. The 
explanation can be followed on figures 7.11–7.12 (provided the terms “left” and “right” 
are exchanged), starting with 63.

11.  Squares are taken by pairs since the arrangement for orders 4t ± 1 is the same. See 
§2.1.

12.  In the “third cell from the middle,” the middle cell is also counted.

13.  See §1.3 (n = 4t + 1).

14.  See §2.2.a (Gp, Gæp).

15.  See §1.3 (n = 4t + 3).

16.  See §2.2.a (Dp, Dæp).

17.  That is: the excess of one row or column over the row or column underneath is 
constant for the same order, but increases by 8 for each order.

18.  See §2.2.b (pairs of complements and dyads).

19.  See §2.2.b, Rule IV, first part.

20.  That is, n2–5
2

 and n2–1
2

.

21. See Rule V.

22. See Rule II.

23. See Rule I.

24. See Rule IV, second part.

25. See §2.5.

26. See §2.3.a (p = 1).

27. Case n = 9 only; the excess increases by 8 for the other orders.

28. See §2.3.b (p = 1).

29. See §2.3.a-b (p ≥ 2).

30. See §2.3.c (and Rule III).

31. See §2.4.a & c.

32. See §2.4.a & c. The values of the excesses are 16, 24, 32, 40, . . . if p = 2; 48, 64, 
80, . . . if p = 3; and so forth.





Introduction

As long as man has been constructing his dwellings, he has wanted to know how 
many bricks are needed or how much earth has to be removed for the founda-
tions of his house. Problems of this kind are already found in the oldest texts on 
arithmetic, such as the Chinese Nine Chapters on Arithmetical Techniques. In 
chapter V,1 entitled Shang kung (≈ Evaluation of Work), there are calculations 
of volumes of regular solids, and often also of the number of people required 
for excavating and transport. The same kind of problems are treated in Arabic 
manuals, such as al-Karaj•’s Sufficient Arithmetic [Kåf• f•’l-˙isåb]. This work 
explains how to determine the amount of sun-dried or fired bricks needed for 
a building or how to level the ground. In this paper I do not want to talk about 
these general construction problems but rather about calculations in connection 
with other specific elements of Islamic architecture.

Islamic Architecture

What does “Islamic architecture” mean? As we can define “Christian architec-
ture” mainly by churches, chapels, monasteries, etc., so we can define “Islamic 
architecture” by the principal forms of Islamic buildings, which are not only, 
but mainly religious. The oldest of these buildings are mosques which date 
from the first beginnings of Islam. According to Creswell’s account,2 Arabia, 
at the rise of Islam, did not possess anything worthy of the name of architec-
ture. Only a small proportion of the population was settled, and these lived in 
dwellings which were scarcely more than hovels. When Mu˙ammad migrated 
to Medina he built a house for himself and his family in AD 623. Like many 
mud-brick houses in the Middle East, Mu˙ammad’s house consisted of a square 
courtyard with two rooms (later increased to nine to accommodate his wives) 
on the south-east side. The first communal prayers were held in this courtyard. 
For the comfort of the worshippers a portico made of palm-trunks and branches 
was built on the north side of the courtyard, together with a smaller one which 
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gave shelter to visitors who sometimes spent the night there. The portico also 
served as a place for deliberations on community affairs; hence to this day 
the mosque has retained its multivalent role as a place of prayer, social activi-
ties and political debate. Practical needs thus contributed to the house of the 
Prophet becoming the first mosque of Islam.

The men who formed the Arab armies of conquest were mainly Bedouin, 
but even those who came from permanent settlements, such as Mecca and 
Medina, knew nothing of art or architecture. In these early days, the Muslims, 
when they conquered a town in Syria, usually took one of the churches and used 
it as a mosque, or merely shared one of the churches if the town had surrendered 
without resistance. At Jerusalem they made use of the remains of the basilical 
hall of Herod, which ran along the south side of the Temple enclosure, but had 
been destroyed by the army of Titus. In Persia, at Persepolis and Qazw•n, they 
appear to have taken hypostyle audience-halls of the Persian kings, which had 
flat roofs resting on columns with double bull-headed capitals. But the situation 
was different in Iraq, for there the Arabs founded new towns, so pre-existing 
buildings could not be employed, and they had to construct some sort of place 
for themselves. What kind of buildings were the first mosques of the earliest 
towns in Islam?

At Baßra, founded about 635, the first mosque was simply an area marked 
out on the ground and the people prayed there without any building. At Kufa, 
founded in 638, the first mosque was equally primitive. The first mosques to be 
worthy of the name of architecture were the second Great Mosques at Basra 
(665) and Kufa (670). According to Creswell, it is apparent that the roofing 
system resembled that of a hall of columns of the Achaemenian kings, exactly 
as was the case in the first Great Mosque at Baghdad. The oldest extant monu-
ment of Muslim architecture is the Dome of the Rock at Jerusalem, completed 
in 691, and restored and embellished during the following centuries. The har-
mony of its proportions and the richness of its decorations make the Dome of 
the Rock one of the most beautiful buildings in the world.

Style and methods of construction changed from generation to genera-
tion, especially in respect to the material, the gates, the façades and minarets, 
the profile of the arches in the interior, and the ornamentation. But the ground-
plan of the mosque remained largely the same. In figure 8.1 two basic catego-
ries of mosque design in distinctive regional style are shown:3 on the left the 
hypostyle hall and open courtyard, as found in the Arabian heartland (Syria, 
Iraq, Saudi Arabia, Egypt, and Yemen), Spain and North Africa, and on the 
right, the bi-axial four-iwan type, as found in Iran and Central Asia, with four 
iwans. Specific elements are the minarets, cupolas, and arches. 

Both for the role they play in respect of the mosque and in their own right, 
there are three fields in which Islam has made a unique contribution to archi-
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tecture and the architectural arts: calligraphy, garden design, and geometry. The 
use of geometry in decoration is ubiquitous and serves to cover flat, curved 
and convoluted surfaces in two- or three-dimensional forms. Thus it can enrich 
and beautify an interior through the use of uniquely Islamic devices such as 
the muqarnas (stalactite vault). The muqarnas was an invention of the Islamic 
world. Although it can be of structural value, associated with the transitional 
zone of a dome, more often it is a purely decorative feature connected to, or 
suspended from, a structural member.

Thus the specific elements characterizing Islamic architecture are the 
muqarnas, and the qubba (cupola), as well as arches and vaults. These we want 
to calculate. Another specific aspect of Islamic architecture, ornament, as found 
in mosaics, tilings, geometrical writing, will not be treated in this paper. In 
earlier papers I explained the calculation of muqarnas and qubba, hence in the 
present chapter the emphasis is on the calculation of arches and vaults. These 
calculations were not the basis for constructions but an appraisal of the neces-
sary manpower and building materials.

The Calculators

Much is still unknown about the tradition of practical mathematics in Islamic 
civilization. In 1992 Rebstock published an important survey on calculation 
in the Islamic Orient, based on a study of more than 100 Arabic and Persian 

Figure 8.1
Two categories of mosques, as found in the Arabian heartland (left) and in Iran and 
Central Asia (right) (Frishman).
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arithmetic texts, most of which remain to be edited. This study has consider-
ably improved our insight into the practical use of mathematics in the medieval 
Islamic tradition.

Under the reign of Caliph al-Ma<m¥n (813–833) the mathematician and 
astronomer Ab¥ Ja>far Mu˙ammad b. M¥så al-Khwårizm•4 wrote in Baghdad 
his well-known Algebra, a work of elementary practical mathematics. Its pur-
pose is, according to the author, to provide “what is easiest and most useful in 
arithmetic, such as men constantly require in cases of inheritance, legacies, par-
tition, lawsuits, and trade, and in all their dealings with one another, or where 
the measuring of lands, the digging of canals, geometrical computations, and 
other objects of various sorts and kinds are concerned.”5 Only the small sec-
ond part of al-Khwårizm•’s treatise concerns practical mensuration.6 He gives 
rules for finding the areas of various plane figures, including the circle, and for 
finding the volume of a number of solids, including the cone, the pillar with 
a circular base, the pyramid, and the truncated pyramid. This section is really 
concerned with the practical application of mensuration, as the first few lines 
already demonstrate: “Know that the meaning of the expression one by one is 
mensuration: one cubit (in length) by one cubit (in width) understood.”

The earliest manual on practical arithmetic is a textbook by Abu’l-Wafå< 
al-B¥zjån•,7 written between 961 and 976. This Book on Settling What Is Nec-
essary from the Science of Arithmetic for Secretaries and Businessmen [K. al-
manåzil f•-må ya˙tåju ilayhi al-kuttåb wa al->ummål min >ilm al-˙isåb]8 consists 
of seven parts. The first three are purely mathematical: on ratio, multiplication 
and division, and mensuration. The other four contain the solutions of practi-
cal problems: on taxes, exchange and shares related to the harvest, problems 
concerning payment for work, and construction estimates.9 The other manual 
by Abu’l-Wafå<, The Book on What the Artisan Needs to Know of Geometric 
Constructions [K. f•-må ya˙tåju ilayhi al-ßåni> min a>mål al-handasa] seems 
to have been compiled from class notes by one of his pupils. This practical 
geometry outlines basic mechanical methods for constructing, proportionally 
subdividing, and symmetrically extending geometric figures, further simplified 
by the use of only a single opening of the compass.10

Interesting problems on mensuration are found in Ab¥ Bakr Mu˙ammad 
al-Karaj•’s11 Sufficient Arithmetic [Kåf• f•’l-˙isåb], written between 1010 and 
1016. The composition of this treatise was part of his duties as a mathematician 
holding an official position: to write a simple textbook in a way accessible to 
civil servants. In the introduction al-Karaj• states that “his work presents what 
people of different classes need for their various activities.” Al-Karaj•’s aim was 
to write a practical manual, like al-Khwårizm• and Abu’l-Wafå< before him, but 
he does not deal with the important practical problem of taxes and heritage. The 
treatise contains the elements of arithmetic with integers and fractions (common 
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and sexagesimal), the extraction of square roots, the determination of areas and 
volumes, and elementary algebra. Chapters 44 to 49 deal with measuring plane 
figures. Chapter 50 is on the mensuration of solids, in chapter 52 the amount of 
sun-dried or baked bricks needed for a construction is determined, and chapter 
53 describes three instruments for levelling the ground.12 Al-Karaj• explains the 
same three instruments in more detail in his treatise Locating Hidden Waters 
[K. inbå† al-miyåh al-khafiyya].13

Two recently studied texts are the Book of the Levels in the Explanation of 
the Measurements [K. al-†abaqåt f• shar˙ al-miså˙åt] by Qå∂• Ab¥ Bakr,14 writ-
ten before the end of the twelfth century, and the Calculators’ Riches [Ghunyat 
al-˙ussåb] by A˙mad b. Thabåt who died 1234.15 Their calculations of domes 
concern hemispheric domes and are not faultless; in the case of vaults their 
calculations are simple and correct.

Ghiyåth al-D•n Jamsh•d Mas>¥d al-Kåsh• ranks among the greatest 
mathematicians and astronomers in the Islamic world. He was a master cal-
culator/ mathematician of extraordinary ability, he applied iterative functions 
widely, he laid out his calculations in such a careful way that errors could not 
creep in undetected, and he did a running check at every stage. In short, his 
talent to optimize a problem let him appear as the first modern mathematician. 
When Ul¥gh Beg decided to construct the Samarkand observatory, he invited 
al-Kåsh• to his court—some time after 1416. Al-Kåsh• died in June 1429 out-
side the observatory, probably murdered on the command of Ul¥gh Beg.16 Two 
years earlier he had finished the Key of Arithmetic [Miftå˙ al-˙isåb], one of his 
major works. The work is intended for everyday use, as is clear from al-Kåsh•’s 
remark: “I redacted this book and collected in it all that is needed for the one 
who calculates carefully, avoiding tedious length and annoying brevity.” By far 
the most extensive part is Book IV, On Measurements. 

The main aim of the last chapter, Measuring Structures and Buildings, 
is practical: “The specialists merely spoke about this way of measuring for the 
arch and the vault, and did not think that anything else was necessary. But I 
present this application among the necessities together with the rest, because it 
is more often required in measuring buildings than in the rest.” Al-Kåsh• uses 
geometry as a tool for his calculations, not for constructions. Besides arches/
vaults and qubbas, al-Kåsh• calculates here the surface area of a muqarnas, 
that is to say, he establishes approximate values for such a surface. He is able 
to do so because a muqarnas, although it is a complex architectural structure, is 
based on relatively simple geometrical elements. Only elementary geometrical 
rules are used in the calculation.

To summarize: In the extant Arabic literature we find several calcula-
tions of arches and vaults as well as treatises on the measurement of the qubba. 
The most accomplished explanations and calculations, however, are those of 
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al-Kåsh•, who also considers more elaborate forms of arches and domes than 
the others. His skill in finding practical approximations is equally shown in 
measuring the muqarnas. No other treatise on the calculation of a muqarnas 
surface has yet been found.

Calculating Arches and Vaults

From about 200 BC to AD 1100 the main structural components of all large 
buildings in the Roman and Byzantine Empires were the semicircular arch 
(the barrel vault is an elongated arch and the dome is a rotated arch), columns 
and walls.17 From the Byzantine Empire the Umayyads inherited the system 
of round arcading which rarely showed a tendency towards becoming slightly 
pointed.18 The innovation of the pointed, or ogival, arch came from the East.

The ogival arch is first found in Buddhist India in the second century AD 
and had reached Syria, possibly by way of Sassanid Iran, by AD 561. A number 
of such arches appear in Syrian buildings of the eighth century and it became 
common in Egypt in the ninth century. A beautiful early example is the mosque 
of Ibn ˇ¥l¥n in Cairo, built in 876–879. Under Umayyad rule the round arch 
persisted, but developed into the two-centered form showing an increasing 
tendency towards pointedness. A round arch is struck from a single center; a 
pointed arch has more than one center and can be thought of in its simplest 
form as being struck from two centers with overlapping arcs which produce an 
increasingly pointed arch as they are moved apart horizontally (figure 8.2). In 
the great mosque at Damascus, built in 715, the arches are very slightly pointed 
with the two centers being only one-eleventh of the span apart. 

In the succeeding two centuries the same trend is still apparent, but 
is complicated by the three- and four-centered arch. Figure 8.4 shows a three-
centered arch, with point E as a (double) center and the other two centers situated 
in the two lower points Z and H. These two points are obtained by intersecting 
the extensions of the radii through E with the perpendiculars dropped from the 
extremities of the span of the arch. When the two lower centers move, the arch 
will change its acuteness. The four-centered arch is similar to the three-centered 
one except that the (double) center splits into two points, which are displaced 
from the center of the first circle toward the extremes. The smaller the displace-
ment of the two centers, the closer the profile will be to the profile of the three 
centered arch. The greater the displacement, the shallower the profile. 

Since ogival arches are the exception in the first centuries of Islamic 
architecture, only the calculation of semicircular arches is found in the early 
arithmetic books. This practice continued well into al-Kåsh•’s time, probably 
because most manuals were based on earlier manuals. Al-Kåsh• remarks that, 
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“Our predecessors determined those (i.e., arch and vault) as half a circular hol-
low cylinder, but we did not see anything like it, either in old or in new build-
ings. We have mostly seen ones that are pointed in the middle, and in a few 
cases they are smaller than half a hollow cylinder.”

Among these predecessors we find A˙mad b. Thabåt (d. 1234), who cal-
culates arches as follows19 in figure 8.3; all given and calculated quantities are 
written out in words [MS Ayasofya 2728, fol. 117b]:

The authors of these computations use “arch” and “vault” interchange-
ably. The difference between an arch and a vault is that the depth of an arch is 
not greater than its span, but in the case of the vault it is greater. The distance 
between the two façades is called the depth of the arch. What we call in the arch 
its depth, is called in the vault its length.

A˙mad b. Thabåt discusses the following calculation (figure 8.3): When 
a vault is said to have an exterior curve of [u1 =] 20d [where d stands for 
one dhirå>, i. e., one l], and an interior curve of [u2 =] 12d, and the distance 
between the two curves amounts to [b =] 2d, and its length to [l =] 50d, then 
how much is its surface area and its volume?

Solution: A˙mad b. Thabåt considers the surface area of the vault as the 
sum of “plane” surfaces. These consist of the visible surfaces inside and outside 

Figure 8.2 
Diagram showing pointed arches formed with constant radii on centers with successive 
separation of one tenth, one seventh, one fifth, and one third of a span (Warren).



the vault together with the surfaces at both ends, plus the invisible ones, namely, 
the two surfaces which support the vault. Thus we have:

Outside surface area: l × u1 = 50d × 20d = 1000d2,

Inside surface area: l × u2 = 50d × 12d = 600d2,

Two ends: 2 × 
u1 + u2

2
 × b = (20d + 12d) × 2d = 64d2,

Two supports: 2 × l × b = 2 × 50d × 2d = 200d2, therefore the total surface 
area equals 1864d2.20

The volume of the vault is obtained by multiplying the surface area of one 
end of the vault by the length of the vault:

u1 + u2

2
 × b × l = 16d × 2d × 50d = 1600d3.

The same method is applied by the later mathematician Ibn al-Óanbal• (d. 
1564) in his Book on Measurements [Kitåb al-miså˙a], sometimes considered 
as a comprehensive commentary to A˙mad b. Thabåt’s work.21

The calculation of the volume of a wreath or discus is already formulated 
by al-Karaj• as follows [chapter 50, section 4]: “Multiply half the sum of the 
outer and inner circumference by the width of the solid to be measured and 
multiply this product by the length.” 

This formula is identical to the one applied above. In a barrel vault with 
radii r1 > r2, the circumferences of the outer half circle and the inner half circle 
are pr1 and pr2, and the surface areas of the outer and inner circle are pr 1

2 and 
pr 2

2. 
Hence the surface area of the half ring is
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Figure 8.3 
Calculation of a barrel vault.
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Multiplying this product by the length (width) yields the formula 
u1 + u2

2
 × b × l.

The vault or arch are not mentioned by al-Karaj• in this context.
How does al-Kåsh• deal with these matters? At first he explains at length 

the different elements of an arch and how these are connected and which part 
could disappear into a wall. This is followed by five methods for drawing the 
façade of an arch.22 The first two are three-centered arches, the third is a four-
centered arch, the fourth and fifth are two-centered. The fourth method is the 
one shown in figure 8.2 on the lower right, its two centers being separated by 
one third of the span. According to al-Kåsh•, the second façade was the most 
common in his time; he therefore uses it to illustrate his calculation method. 
This kind of façade is convenient, as al-Kåsh• remarks, when you need a span 
of five to ten, or up to fifteen cubits. 

Construction of the second façade (figure 8.4 is taken from the oldest 
extant ms. with Roman letters added):

•  draw a semicircle on diameter AD , the span of the arch 

•  extend AD at both sides by the thickness of the arch to the points I and M. E is the 
center of the semicircle;

•  divide this semicircle into four equal parts through the points A, B, C, G, D

•  extend BE and GE by EZ and HE, equal to AC, and by BK and GL, equal to DM, 
the thickness of the arch

•  on center E draw the arcs ML and KI, on center H the arc GT, and on center Z 
the arc BT

•  connect HT and ZT and extend them by the thickness of the arch to the points O 
and S

•  draw arc LO on center H and arc KS on center Z

•  erect the perpendiculars SN and ON on the lines TS and TO

The sections AK, KT, TN, TL, and LD form together the façade of the arch 
with TN as the keystone.

When we construct area AFQD with parallel sides and right angles, we 
obtain the spandrels of the arch, the sections tNQ and JNF. Section tMD as well 
as section JIA could disappear into a wall.

After al-Kåsh• has explained and carried out all five methods for con-
structing the façade of an arch and has completed the characterization of the 
arch and the vault, he continues by surveying them. He explains that he has 
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calculated factors relating some measurements of an arch to its span and to its 
thickness. He has put these factors down in a table together with an explanation 
of the method. These factors have also been transformed into Indian numerals 
and been added to the table. He then gives an example of how to calculate with 
these factors. This is followed by a detailed account of how these factors were 
accomplished.23

Example, How to use the table:

Al-Kåsh• assumes (figure 8.4) the span AD of the second façade to be equal to 
20 and the width DM of the arch to be equal to 5. I call the exterior curve u1 
the line of convexity and the interior curve u2 the line of concavity, and b is the 
width of the arch at its base. Al-Kåsh• does not render the calculations but gives 
only the rounded results. I now list the approximations given by al-Kåsh•:

•  column 1: With this factor al-Kåsh• calculates the interior curve : 

ABTGD = 1.651 × AD = 1.651 × 20 = 33.02 ≈ 33.

•  column 2: Multiplying this factor with the width al-Kåsh• obtains half the 
difference between the exterior and the interior curve. Adding this amount to 
the interior curve, found by means of column 1, he obtains half the sum of the 

Figure 8.4 
Construction of the second façade in a ms. of al-Kashi’s treatise.
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exterior and interior curve. Multiplying this quantity with the width of the arch 
he obtains the surface area (A) of the façade:

1.599 × b = 
u1 – u2

2
;  u1 – u2

2
 + u2 × b = 

u1 + u2

2  × b = A

In our practical example: u1 = IJNtM; u2 = ABTGD;

u1 – u2

2
 = 1.599 × 5 ≈ 8; 

u1 – u2

2
 + u2 = 8 + 33 = 41; A = 41 × 5 .

•  column 3: Inner height of the arch: 
ET = AD × 0.598 = 20 × 0.598 = 11.96 ≈ 12.

•  column 4: Upper width of the arch: 
TN = AI × 1.099 = 5 × 1.099 = 5.495 ≈ 5.5.

Table to calculate arches and their parts.
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•  column 5: To obtain the surface area of the concavity, ABTGDE, al-Kåsh• 
multiplies the square of the span by 5 and divides by 12. This calculation is 
equivalent to multiplying with the value found in the table, 0.419, or 0;25,9,13 
≈ 5/12.

With these values we can now calculate many different parts of the arch: 

To calculate the volume of the arch we proceed in the same way as A˙mad 
b. Thabåt above: After the surface area of the arch has been found, by means of 
the second column of the table, we multipy this number with the depth of the 
arch and obtain its volume.

Sometimes the arch disappears partly inside a wall and we want to know 
how much is visible and how extensive the segments inside the wall are, namely 
section tDM and section JAI: These segments are calculated by taking the dif-
ference of the circle segment MtE and the triangle tDE, which can be found 
from MD and ED.

When we subtract this amount from the total surface area of the arch we 
obtain the surface area of the visible part of the arch.

It might be necessary to calculate the spandrels, section NQt and section 
NFJ: In this case we calculate the area AFQD and subtract from this amount the 
area of the visible part of the arch, calculated above, and the area of the opening 
of the arch, area ABTGDE, found by means of the fifth column. The difference 
gives the surface area of the spandrels. When we multiply this amount with the 
depth of the spandrels, we obtain the volume of the two spandrels.

As explained above, al-Kåsh•’s book is for practical use. Hence he rightly 
shows how to make life easier by working with rounded values. When arches 
other than the five models given by al-Kåsh• are involved, approximation again 
is used, and one takes the model closest to the required arch. Golombek and 
Wilber24 have considered existing examples of Timurid arches in the order 
outlined by al-Kåsh•. Examples have been recorded for all but the fifth model, 
which was, however, common in small windows. In comparing the models 
described by al-Kåsh• with actual examples of Timurid arches we have to bear 
in mind that al-Kåsh•’s purpose was to calculate volumes and surfaces, not to 
construct them. This means that an elegant approximation, which leads us to an 
easy calculation, is the ultimate goal. 

Bulatow25 has analyzed arches from the twelfth to fifteenth centuries in 
Central Asia and he suggests that some pointed arches were constructed as 
intersections of ellipses. For he notes that for spans exceeding 10 m. these were 
easier to construct than four-centered arches. The architects were, in addition, 
familiar with the stability of the ellipse, because its construction was known 
from Sasanian examples. According to his analysis, this kind of arch is found in 
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some of the most important Timurid buildings of the period, such as the Gur-i 
Amir in Samarkand, the mausoleum of Tamerlane and Ul¥gh Beg, namely in 
its dome, interior niches, arches in zones of transition, and entrance portal. The 
same arches have elsewhere been identified as three- and four-centered arches 
and can be considered as such for all practical purposes.

Al-Kåsh• does not mention an elliptical profile either for arches or for 
domes. There are a number of domes for which the profile may be interpreted 
as the intersection of symmetrical elliptical arcs. Bulatow has demonstrated 
that the dome of the Gur-i Amir was probably designed by using a pair of foci 
and a string. However, an analysis of the Gur-i Amir (figure 8.5) suggests that 
this dome could also have been originated by the fourth method (figure 8.2, 
far right): With line AD as the span and the points B and Z dividing the span 
into three equal parts we obtain the circle segments just inside the curve drawn 
by Bulatow. The difference between the two curves lies within the error range 
accepted by modern architects. The ellipse may be easier to construct but circu-
lar segments are easier to calculate. For calculating an elliptical dome, like the 
dome of the Gur-i Amir, al-Kåsh•’s factors are excellent.

The section on calculating arches ends in al-Kåsh•’s Key of Arithmetic 
with the following remark (my translation) “I have talked a lot about the subject 
of this section, as this section is very important, and my predecessors did not 
treat it as they should have done.”

Figure 8.5 
Dome of the Gur-i Amir (Bulatow’s analysis with additions).
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The Qubba

Besides mosques and madrasas—the second important religious building—
monasteries, drinking fountains and elementary schools, the mausoleum, or 
qubba, is an important Islamic monument. From the earliest times most qubbas 
were of the same style: a cubic room on a square base with a vaulted roof. The 
problem of erecting a cupola on a square base finds in Muslim architecture a 
large variety of solutions. The space of transition from the square, or polygon, 
to the circle is occupied either by planks covered with stucco, or by corner-
trompes made at first of bricks and later of stone, or by stalactite pendentives, 
called muqarnas. The Arabic word for dome or cupola is qubba pl. qibåb or 
qubab. By extension qubba also means: cupolaed structure, dome-shaped edi-
fice; domed shrine, memorial shrine (esp. of a saint). At the end of this section 
we shall see that the term parabolic qubba [al-qubba al-mukåfiya] is used in a 
purely mathematical sense to denote a paraboloid.

Calculation of the qubba follows the same pattern as that of vaults: In 
the common arithmetic texts only hemispheric domes are calculated. Al-Kåsh• 
however, gives an elegant and precise method to calculate a dome originated 
by turning the façade of an arch around its axis. His exposition is based on his 
fourth model, that is, on a two-centered arch with the two centers one-third of 
the span apart (figure 8.2, below right). Applying al-Kåsh•’s factors, excellent 
results can be obtained with an error range of less than 3 percent. “To simplify 
the procedure” as al-Kåsh• says, he does not explain how he arrives at these 
factors. For a practical application the rules are enough on their own. The fol-
lowing question arises: Why is al-Kåsh• so concise in the case of domes, when 
he uses such elaborate calculations for surveying arches? Could these factors 
be used for several kinds of domes, which deviated to varying extents from the 
model discussed by al-Kåsh•?

In all extant Arabic treatises the qubba is assumed to consist of a solid 
shell between two concentric surfaces. In practice, however, the inner and outer 
surfaces of the shell are never really parallel, because pressure occurs in the 
lower part (up to 61°) and pull in the upper part. Al-Kåsh• does not carry out the 
calculation of the hemispheric qubba but refers to his calculation of the sphere. 
There he uses, as expected, the right formulas for area and volume, expressing 
p as the ratio between the circumference and the diameter of a circle. Abu’l-
Wafå<, who is the first to mention the measurement of the qubba, also gives the 
right definitions and calculation method, mentioning Archimedes.26 From then 
on the calculation of volume and surface areas of hollow hemispheric qubbas 
form a regular part of practical arithmetical textbooks, although a wrong “for-
mula” for the calculation of the volume frequently occurs.
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When the inner and outer diameter of a hemispheric qubba are known, its 
volume and the inner and outer surface areas can be calculated from the volume 
and the surface area of a sphere.

The correct formulas for the area (A) and the volume (V) of a sphere with 
diameter 2r are:

A = (2r)2 × p; V = r × 
A
3

 = 
4
3
pr3.

In Islamic mathematics p is usually expressed as: discard one seventh and 
half of one seventh and multiply with four: 

p = 1 – 
1
7

 – 
1
2

 × 
1
7  × 4 = 

11
14

 × 4 = 3
1
7

.

Mathematically, it is more difficult to prove a formula for calculating the 
surface area of a sphere than for the volume. However, in the common arithme-
tic books the computation of the inner and outer surface areas of the qubba is 
based on the correct formula: 

A = (2r)2 × 1 – 
1
7

 – 
1
2

 × 
1
7  × 4

The volume of the qubba, on the contrary, is usually based on the follow-
ing wrong formula: 

V = (2r)3 × 1 – 
1
7

 – 
1
2

 × 
1
7  × 1 – 

1
7

 – 
1
2

 × 
1
7 

Comparing the two results calculated by means of the correct and the 
erroneous formula, the difference (D) is:

D = (2r)3,  11
14 2

– 
p
6 , and with p = 3

1
7

, 

D = (2r)3121
196

 – 
22
42  = 0.0935(2r)3.

This means that the calculated volume is 17.86 percent(!) more than the 
correct volume, independent of the size of the diameter. This is especially sig-
nificant when the architect is paid according to the measurements of the build-
ing (see conclusion).

Even al-Karaj• in Sufficient Arithmetic gives this wrong formula, but he 
adds a second method, in which the volume of a sphere is calculated by mak-
ing a waxen model:27 “You take a rectangular solid, made out of wax and with 
its three dimensions of equal length, and weigh it. Let its weight be 30 dirham. 
Now you make from this (material) a sphere, as perfect as possible, with the 
diameter equal to the dimension of the solid. The weight of this sphere is found 
to be a little less than 18 2

3
. 



Hence, the diameter is raised to the third power and then 

1
3

 and 
1
9

 × 
2
5

 is subtracted. 

The difference between the two results is very small.” 
This implies the formula:

V = (2r)3 × 1 – 
1
3

 – 
1
9

 × 
2
5  

Although this sounds like practical mathematics, it gives a result which is 
even worse than that of the first method—being off by almost 20 percent! Thus 
one wonders whether the experiment was made at all.

Mu˙ammad Bahå< al-D•n al->Åmul• (1547–1622) says in his Essence of 
Arithmetic (chapter 6, section 3, Mensuration of Solids, ca. 1600),28 “To mea-
sure the sphere, multiply half its diameter with one third of its surface area; 
or, subtract three fourteenths from the cube of its diameter, and again from the 
remainder, and again from the remainder.”

Hence two formulas are given:

V = r × 
A
3

, the correct mathematical formula, or,

V = (2r)3 × 1 – 
3
14  × 1 – 

3
14  × 1 – 

3
14 , 

the formula for practical use.
Here we find the two formulas side by side, each in its own right, the 

mathematically correct formula and the common practical formula. The brack-
ets have been added, because I have assumed, with only Nesselmann’s edition 
at my disposal, that the second “and again from the remainder” is due to the 
scribe.29 Whether Bahå< al-D•n or the scribe made this change, this formula 
gives a result that is out of the question, the calculated formula being 7.4 per-
cent less than the correct volume. But who wants this? Throughout the centu-
ries constructors, architects, and artisans, probably profited by using the wrong 
formula.

In her commentary to the Topkapi scroll Necipo=lu reasons:30 

It is unfortunate that Ibn al-Haytham’s Book of Buildings and Constructions 
[K. al-Abniya wa’l->uq¥d] and al-Karaj•’s Book of Architectural Construc-
tions [K. >Uq¥d al-abniya] have not survived. The latter, which dealt with the 
construction of buildings, bridges, and engineering, was described by Ibn al-
Akfån• as a work exclusively based on practical geometry. Ibn al-Haytham’s 
lost work, on the other hand, was referred to by the physician and biographer 
Ibn Ab• Ußaybi>a (1203–1270) as a “treatise on the construction of ditches 
and buildings, with all the figures of geometry joined together, a work con-
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cluding with the three conic sections, namely, the parabola, hyperbola, and 
ellipse.” These lost treatises relying on practical geometry, therefore, appear 
to have been illustrated with geometric constructions that included conic sec-
tions, constructions probably adapted to simplified mechanical procedures. 

Ibn Khald¥n testified to the use of conic sections in architecture and 
those crafts dealing with bodies, “Conic sections are a branch of geometry. 
This discipline is concerned with the study of figures and sections occurring 
in connection with cones. It proves the property of cones by means of geo-
metrical proofs based upon elementary geometry. Its usefulness is appar-
ent in practical crafts that have to do with bodies, such as carpentry and 
architecture. It is also useful for making remarkable statues [monuments] 
and large objects [hayåkil, “effigies” or “edifices”] and for moving loads 
and transporting large objects [hayåkil] with the help of mechanical contriv-
ances, engineering [techniques], pulleys and similar things.”. . .

Treatises on the mensuration of parabolas and paraboloids were writ-
ten by such mathematicians as Thåbit b. Qurra (836–901), Ibråh•m b. Sinån 
(909–946), al-Sijz• (2nd half 10th c.), Ab¥ Sahl al-Q¥h• (fl. 980–100), and 
Ibn al-Haytham (died c. 1040), some of them including sections on arches, 
vaults and domes. Al-Sijz•, for example, wrote a work exclusively dealing 
with the mensuration of domes, entitled Epistle about the Characteristics of 
Hyperbolic and Parabolic Domes [R. f• khawåßß al-qubba al-zå<ida wa’l-
mukåfiya]. 

The many Arabic treatises on conic sections, written after Apollonius 
of Perga’s Conica was translated, often deal with practical application. Their 
contribution to architectural practice (particularly designing pointed arches, 
vaults and domes) and to the decorative arts awaits assessment by historians 
of science so that the ways in which theory and praxis interacted can be 
understood more clearly.

So far, the inspection of the above-mentioned treatises has not confirmed 
that they were for practical use. Jan Hogendijk has looked at al-Sijz•’s treatise 
on the hyperbolic and parabolic domes. According to him, the work is on pure 
mathematics only, with no connection to architecture. The other treatises have 
been studied by Suter31 and recently edited by Rashed.

Thåbit b. Qurra’s32 long treatise On Measuring Paraboloids [F• miså˙at 
al-mujassamåt al-mukåfiya]33 deals with solids created by rotating different 
sections of a parabola. In proposition 36, the last proposition of the treatise, he 
proves the following property of the “parabolic qubba” (figure 8.6, top), that is: 

The volume of every parabolic qubba is equal to half the volume of the cyl-
inder, with as base the circular base of the qubba, if the qubba has a regular 
vertex, or of the lower basic circle, if the qubba does not have a regular ver-
tex, and with the height equal to the axis of the qubba.
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Ab¥ Sahl al-Q¥h•34 wrote a much shorter treatise on the subject Deter-
mining the Volume of the Paraboloid [F• istikhråj miså˙at al-mujassam al-
mukåf•].35 Here he criticizes the “famous and well-known” treatise by Thåbit 
b. Qurra, “the only one on the subject,” saying that it is “too voluminous and 
long, there are about forty propositions, numerical, geometrical and others, 
there are all these lemmata for just one proposition: how to know the volume 
of a paraboloid.”36 Al-Q¥h• expounds that examining Thåbit’s treatise, he found 
it very difficult to understand, whereas Archimedes’ treatise On the Sphere and 
the Cylinder seemed much easier to him. Thinking that many people might 
have gained the same impression, he feels compelled to determine the volume 
of the paraboloid afresh. He is able to do this by using a method that is easily 
understandable and does not need any lemmata. Al-Q¥h• proves in only three 
propositions that: “Every paraboloid is equal to half its cylinder.”

Al-Q¥h•’s treatise was criticized by Ibn al-Haytham37 in his Treatise on 
Measuring the Paraboloids [Maqåla f• miså˙at al-mujassamåt al-mukåfiya].38 
In an almost philosophical introduction he writes: “The person who pronounces 
or composes any discourse or essay has a motive which leads him to say what 

Figure 8.6 
Parabolic domes after Ibn al-Haytham (Suter).
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he says or write what he writes. We examined with great care Thåbit b. Qurra’s 
treatise On Measuring Paraboloids. We found that he followed a road devoid of 
any plan, and that his way of explaining was long and involved painful difficul-
ties. We then got hold of a treatise on Determining the Volume of the Parabo-
loid by Ab¥ Sahl al-Q¥h•. We found it bare and concise and we learned that, 
according to the author, the reason he did his research and wrote the treatise, 
was the difficulties encountered in Thåbit b. Qurra’s treatise. However, we have 
established that Ab¥ Sahl’s treatise, although easier and simpler, only contains 
the proof of the measurement of one of the two kinds of paraboloids.” (In fact, 
Thåbit b. Qurra’s treatise too discusses only the first kind of paraboloid.)

Ibn al-Haytham continues by saying that there are two kinds of parabo-
loids, one is comprehensible and easy, the other difficult and painful. His proof 
for the first kind of paraboloid needs several lemmata and is more detailed than 
al-Q¥h•’s demonstration. Then he turns to the second kind of paraboloid gener-
ated by rotating the parabola around its ordinate (figure 8.6), and proves in an 
elegant way that: “The paraboloid generated by rotating the parabola around its 
ordinate is equal to one third plus one fifth of the circumscribed cylinder.”

Both formulas are easy and exact, so they could well be used for practical 
calculations but they do not provide the surface areas. Also, we have not yet 
found traces of these easy formulas in arithmetic manuals. Until we find these, 
we should consider the above results on paraboloids as highschool mathemat-
ics. Another serious question is, were parabolic qubbas ever built? The parabo-
loid, shown in figure 8.6, above, would certainly make a beautiful qubba, but 
where do we find an example of a parabolic qubba? Elliptical arches and qub-
bas existed in pre-Islamic times. Exact formulas for ellipsoids are more difficult 
to develop, but, as we have seen in the section on arches, their surface areas and 
volumes can be approximated. However, how these structures were calculated 
before al-Kåsh• established his factors, remains to be looked at.

These treatises on conic sections are of great interest from the point of 
view of the history of mathematics but were probably never used by artisans. 
They do not give the impression of being meant for practical use.

One important question remains: why are the above-mentioned treatises 
by Ibn al-Haytham and al-Karaj• lost? Were they never studied, and therefore 
not copied? Or, were they used so intensively, that the soiled and worn out cop-
ies were thrown away? During the Dibner conference in November 1998, David 
King remarked that the extant astrolabes might well be those that were never 
used. Could this apply similarly to treatises on construction or containing orna-
ments, like the Topkapi scroll?
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Approximating the Muqarnas

The muqarnas (figure 8.7) developed around the eleventh century in Iran and 
North Africa. Whether or not the two developments are related, two points 
about these new forms must be made. One is that, from the late eleventh cen-
tury onward, all Muslim lands adopted and developed the muqarnas, which 
became almost as common a feature of an elevation as the Corinthian capital 
was in Antiquity. The second and far more important point is that, from the 
moment of its first appearance, the muqarnas acquired four characteristic 
attributes whose evolution and characteristics form its history: it was three-
dimensional and therefore provided volume wherever it was used, the nature 
and depth of the volume being left to the discretion of the maker; it could be 
used both as an architectonic form, because of its relationship to vaults, and as 
an applied ornament, because its depth could be controlled; it had no intrinsic 
limits, since not one of its elements is a finite unit of composition and there is 
no logical or mathematical limitation to the scale of any one composition; and 
it was a volume that could be a solid or a void, a projecting mass of complex 
shapes or a complex outline—a three-dimensional unit which could be resolved 
into a two-dimensional outline.39

The muqarnas was used in domes, in niches, on arches, and as an almost 
flat decorative frieze. In each instance the module as well as the depth of the 
composition is different and adapts to the size of the area involved or to the 
required purpose. In ceilings it serves a clear architectonic aim, or at the very 
least provides the structural illusion of ascending movement culminating in a 
small cupola. The muqarnas is at the same time a linear system and an organi-
zation of masses. Despite occasional textual references to plans, there are no 
known Islamic architectural working drawings from the pre-Mongol era. The 
earliest known example of a construction plan is a 50 cm. stucco plate show-
ing the projection of a quarter muqarnas vault which was found at the Takht-i 
Suleiman in Iran. This plate from the 1270’s was the basis for Ulrich Harb’s 
reconstruction of the collapsed vault. Fourteenth-century sources frequently 
mention architectural drawings produced either on clay tablets or on paper. 
In the fifteenth-century Timurid world drawings seem to have been more 
widely used than before. Their extensive use had become essential because 
of the increasing intricacy of the geometric design. Up until Necipo=lu’s dis-
covery of the Topkapi scroll the earliest known examples of such architectural 
drawings were a collection of fragmentary post-Timurid design scrolls made 
of sixteenth-century Samarqand paper, preserved at the Uzbek Academy of 
Sciences in Tashkent. These scrolls almost certainly reflect the sophisticated 
Timurid drafting methods of the fifteenth century. In 1876 the English architect 
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C. Purdon Clarke brought back from Teheran some scrolls and working draw-
ings from the eighteenth and the nineteenth centuries that he had collected fol-
lowing the death of the official state architect, Mirza Akbar; these scrolls are 
now preserved in the Victoria and Albert Museum. In 1981 similar material, 
still in the hands of the master-artisan, was examined by W. K. Chorbachi in 
two Arab towns. The collection of these scrolls was not only the basic reference 
manual but also served as a design book. A few years ago I visited a workshop 
at Fez/Morocco, where the artisans used a construction-plan for a muqarnas 
on a scale of 1:1. The pieces cut out for constructing the muqarnas could 
actually be put on the draft such that the cross section of the element, i.e., the 
cross section of the beam, matched the figure in the draft exactly. The Timurid 
scrolls show a decisive switch to the far more complex radial muqarnas, with 
an increasing variety of polygons and star polygons. Also the Akbar scrolls are 
more elaborate than the twentieth-century Fez drawing. Despite their simplic-
ity, however, the more recent scrolls testify to a relatively unbroken tradition 
of architectural practice in the Islamic world from at least the Timurid period 

Figure 8.7 
Curved Muqarnas with its Plane Projection.
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onward. A continuous tradition from the thirteenth-century Takht-i Suleiman 
plate to the twentieth-century Fez drawing is evident. As in the Ilkhanid period, 
700 years earlier, the plane projection of the elements in the Moroccan plan 
consists of simple geometrical figures: squares, half-squares, rhombuses, half-
rhombuses, rectangles, almonds, bipeds (figure 8.7).

The contents of the Topkapi and Tashkent scrolls support the commonly 
expressed view that the key to Timurid–Turkmen architecture lies not only in its 
fascination with complicated vaulting systems but also in its extensive surface 
decoration. The numerous two-dimensional geometric patterns and epigraphic 
compositions in these scrolls condense complex compositions into shorthand 
formulas meant to act as guidelines for the simpler working methods employed 
on the construction site. They thus provide a valuable glimpse into the pro-
cesses of design and execution. The contents of the Topkapi scroll, which 
resemble those of a pattern book, can be seen as an index of the unprecedented 
Timurid-Turkmen emphasis on surface decoration, an emphasis that turned the 
flat façades of buildings into stage props for the display of virtuoso ornamental 
panels and fragmented vaults into multifaceted compartments with no struc-
tural role. The Topkapi scroll reflects a “painterly” aesthetic of architecture 
informed by the cultural prestige of drawings on paper.

Mohammad al-Asad describes40 the muqarnas as: 

. . . a vaulting system based on the replication of units arranged in tiers, each 
of which supports another one corbeled on top of it. The final result is a stair-
like arrangement that is sometimes referred to as honeycomb or stalactite 
vaulting. The units are made of wood, brick, plaster, or stone and can be 
painted, or, as in the case of the brick or plaster ones, covered with glazed 
tiles. Muqarnas compositions can be located in different parts of a building, 
articulating a column capital, supporting a minaret’s balcony, or vaulting 
over an entry portal, niche, or hall. Muqarnas vaults are usually part of a 
double–shell arrangement and are therefore visible only from the inside of 
a building. In some cases, as in the mausoleums of N¥r al-D•n in Damascus 
(1172) and Imam Dur in Samarra (circa 1085), the muqarnas is also reflected 

on the outside.

Al-Kåsh• defines the muqarnas in his practical way as follows41 (figure 
8.7): 

The muqarnas is a ceiling like a staircase with facets and a flat roof. 
Every facet intersects the adjacent one at either a right angle, or half a 
right angle, or their sum, or another combination of these two. The two 
facets can be thought of as standing on a plane parallel to the horizon. 
Above them is built either a flat surface, not parallel to the horizon, or 
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two surfaces, either flat or curved, that constitute their roof. Both facets 
together with their roof are called one cell. Adjacent cells, which have 
their bases on one and the same surface parallel to the horizon, are called 
one tier.

Hence the elements of a muqarnas consist of cells and intermediate ele-
ments, connecting the roofs of two adjacent cells.

The plane projection of an element consists of simple geometrical forms, 
called by al-Kåsh• squares, half-squares (cut along the diagonal), rhombuses, 
half-rhombuses (isosceles triangles with the shorter diagonal of the rhombus 
as their base), almonds (deltoids), and large and small bipeds. Rectangles also 
occur. To make these elements fit, they have to be constructed according to the 
same unit of measure. Al-Kåsh• uses in his computation the so-called module 
of the muqarnas, defined as the base of the largest facet, that being the side of 
the square.

On this foundation he calculates the surface area of the muqarnas. In the 
following I shall only sketch his method—the full explanation can be found in 
two former papers.42

Definitions

•  A facet of a cell is a vertical side. 

•  A roof of a cell is a surface, not parallel to the horizon, or two joined surfaces, 
either flat or curved.

•  A cell consists of two facets plus their roof.

•  An intermediate element is a surface, or two joint surfaces, connecting the roofs 
of two connecting cells.

•  An element is a cell or an intermediate element.

•  A tier is a row of cells, with their bases on the same surface parallel to the hori-
zon.

•  The module is defined as the base of the largest facet, that being the side of the 
square. It is the measure-unit of the muqarnas and is equated with “one.”

•  A rhombus is a parallelogram with all sides equal to the module and with the 
acute angles equal to 45°.

•  A half-rhombus is an isosceles triangle with an angle of 45° at its vertex and with 
a base equal to the shorter diagonal of the whole rhombus.

•  A rhomboid is a parallelogram with two opposite sides equal to the module and 
with the acute angles equal to 45°.

•  An almond is a quadrilateral with two opposite right angles, an acute angle of 45°, 
and the two sides adjoining at the acute angle equal to the module.
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•  A small biped is the complement of an almond to a rhombus.

•  A jug is a quadrilateral with two opposite angles of 67°30´, a right angle, and the 
two sides adjoining at the right angle equal to the module. It consists of two half-
rhombuses connected along the sides equal to the module.

•  A large biped is the complement of a jug to a square.

•  A barley-kernel is a quadrilateral with two opposite equal obtuse angles, a right 

angle, and the two sides adjoining at the right angle equal to the module.

Al-Kåsh• distinguishes four types of muqarnas: The simple muqarnas, 
the clay-plastered [mu†ayyan] muqarnas, both have plane facets and roofs. In 
the curved muqarnas and the Sh•råz• muqarnas the roofs of the cells and the 
intermediate elements are curved.

The simple muqarnas is the one in which the underlying elements in the 
plan are simple. The surfaces of the cells’ facets in the lowest tier are based on 
a square, a rhombus, or a rhomboid; in the other tiers they have an additional 
almond or half-rhombus, and their roofs are shaped like squares, half-squares, 
rhombuses, half-rhombuses, almonds, bipeds, or barley-kernels. The barley-
kernels do not occur except on the upper tier. All these elements had been 
treated earlier in chapter two of the same book IV, which is entitled, Measuring 
Quadrilaterals and What Is Connected with It.

To measure the area of the simple muqarnas, called minbar-like by the 
masons, al-Kåsh• tells us to proceed tier by tier. Al-Kåsh• computes the area of 
the facets of a tier by multiplying the sum of the bases of the facets of the tier by 
the height, which for the simple muqarnas is in most cases equal to the module. 
The next step is to count all the surfaces of the roofs of the cells. Their sum plus 
the area of the facets is the area of one tier. Then he adds all the tiers to obtain 
the surface area of the muqarnas. Al-Kåsh• continues: “If we measure the sur-
face on which the muqarnas is constructed, we would obtain the surface area 
of the entire roof of the muqarnas.” This means that for al-Kåsh• the muqarnas 
is an ornament, a decoration. We already have a roof, or a vault, on which the 
muqarnas is constructed. The surface area of the entire structure consists of the 
muqarnas plus the roof or vault on which the muqarnas is constructed.

Note: Al-Kåsh• gives in his calculations the sexagesimal as well as the 
decimal values in order to avoid errors in later copies of his work. He must 
have calculated in the sexagesimal system, as these are the only numbers found 
in the addendum, Method of the Masons, although the result, that is, the coef-
ficient, is given in the sexagesimal as well as in the decimal form.

N.B. The sexagesimal results are more accurate than the decimal ones.

Al-Kåsh• saw the clay-plastered or mu†ayyan muqarnas in ancient build-
ings in Isfahan. It is similar to the simple muqarnas, except that the heights 
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of its tiers might differ and a few tiers might have only a roof and no facets. 
Calculations on the mu†ayyan muqarnas are analogous to the calculations on 
the simple muqarnas.

The curved muqarnas is like a simple muqarnas in which the roofs of the 
cells are curved. Curved surfaces are located between two roofs. These interme-
diate elements are shaped as a triangle or as two triangles, which together form 
a biped. Such triangles are also found on its roof as well as curved almonds 
and barley-kernels. The facets of the cells are only squares or rectangles. Their 
bases are either equal to the module of that muqarnas (i.e., the cell is standing 
on a square or a rhombus), or half the diameter of its square (i.e., standing on a 
half-square), or the difference between the diagonal and its side (which equals 
the shorter side of an almond or biped), or the side of an octagon with radius 
equal to the module. There are no other bases besides these four. One eighth 
of an octagon with radius equal to the module is an isosceles triangle with an 
angle of 45° at its vertex, that is, a half-rhombus, with a base equal to the shorter 
diagonal of the whole rhombus. That al-Kåsh• finds it necessary to mention the 
octagon probably means that octagons occurred rather frequently, or that he had 
a muqarnas in mind where octagons occurred. Two eighths of an octagon with 
radius equal to the module give a jug, the complement to a large biped.

To measure the area of the curved muqarnas we add the bases of all the 
cells. Now we multiply the sum by the coefficient and obtain the area of all the 
cells, i.e., their facets plus their curved roofs. To this amount we add the areas 
of all the intermediate elements and thus obtain the area of the muqarnas. See 
my above-mentioned papers on how to obtain the coefficient and calculate the 
intermediate elements.

The Sh•råz• muqarnas is like a curved muqarnas but has a greater variety 
of elements. In the previous kind, only four possible measures for the bases of 
the facets occur, as was explained, but in the Sh•råz• muqarnas the possibilities 
are innumerable. Also many different elements are found on the roof: besides 
the curved roofs of the cells with intermediate triangles and bipeds one finds tri-
angles, squares, pentagons, hexagons, star polygons, etc., flat as well as curved. 
Sometimes a facet without a roof is found with a mi˙råb (niche) drawn on it.

In Timur’s time, when building activity exploded, local constructors 
could manage the simpler buildings. But for the special and more artistic 
monuments architects and artisans were imported from the conquered lands, 
first Khwårizm, then Tabr•z and Sh•råz, and finally India and Syria. It is known 
that Timur brought in architects from Sh•råz in 1388 and 1393, and that many 
migrated of their own free will.43 The names of several Sh•råz• architects have 
been transmitted, the most famous being Qawåm al-D•n ibn Zayn al-D•n al-
Sh•råz•, the only active builder whose surviving structures display a distinctive 
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architectural style. This might well be the reason why the type of muqarnas 
constructed with many variations, “innumerable possibilities” as al-Kåsh• 
explains, was called Sh•råz•.

To measure the area of the Sh•råz• muqarnas we proceed in principle 
in the same way as in the case of the curved muqarnas. We first make a ruler 
corresponding to the module of that muqarnas and divide it into sixty sections, 
if we calculate in the sexagesimal system, or into ten sections, if we calculate 
“with Indian numbers,” that is, in the decimal system. With this ruler we mea-
sure all the various elements and then compute as before.

Although the appearance of a muqarnas is complex, they usually consist 
of only a few basic elements. These might have been prefabricated, as in the 
case of the collapsed vault on the Takht-i Suleiman, or as in the decorations 
still made in Fez. Al-Kåsh•’s four types are more or less of the same kind, and 
constructed with similar elements. The elements of a muqarnas are standard-
ized. Apart from the decoration, the difference in the appearance results mainly 
from the different ways in which these standardized elements are put together. 
The practice of using standardized elements, making construction faster and 
cheaper, is widely found in ancient China. In Islamic architectural practice 
many monuments, especially palaces, were built rapidly, either because inse-
curity of power made lengthy building programs unlikely to be completed or 
because they tended to be personal rather than dynastic and were not meant to 
or expected to survive their original patron. Hence standardized elements were 
a necessity. When we want to study practical mathematics, we have to take into 
consideration the practice.

Conclusions

In seventeenth-century Safavid Iran architects were paid a percentage on each 
building based on the cubit measure of the height and thickness of the walls:44

The Persians determine the price for masons on the basis of the height and 
thickness of walls, which they measure by the cubit, like cloth. The king 
imposes no tax on the sale of buildings, but the Master Architect, that is Chief 
of Masons, takes two percent of inheritance allotments and sales. This offi-
cer also has a right to five percent on all edifices commissioned by the king. 
These are appraised when they are completed and the Master Architect, who 
has directed the construction, receives as his right and salary as much as five 
percent of the construction cost of each edifice.

Likewise in medieval Italy it was common practice to pay the artisans 
according to the surface area they had completed. The same custom seems to 
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have existed in the Arab world. It is also useful to know in advance, more or 
less, how much material is needed like gold for gilding, bricks for construc-
tion or paint. Payment per cubit was common in Ottoman architectural prac-
tice where a team of architects and surveyors had to make cost estimates for 
projected buildings and supply preliminary drawings for various options. In 
addition to facilitating estimates of wages and building materials before the 
construction began, al-Kåsh•’s formulas may also have been used in appraising 
the price of a building after its completion. His sophisticated formulas were, 
like the simple formulas found in the manuals of arithmetics, useful for every-
day life. This was al-Kåsh•’s objective: to present “all that is needed for the one  
who calculates carefully.”

Al-Kåsh•’s Key of Arithmetic is the only known treatise in which an 
attempt is made to calculate the surface area of a muqarnas. Looking at a 
muqarnas structure (figure 8.8) we can see why. Although based on a relatively 
simple two-dimensional plan, the three-dimensional muqarnas is a complex, 
intricate vaulting. To calculate the curved surfaces of the different cells was 
a near impossibility for all but a master mathematician such as al-Kåsh•. By 
suitably chosen approximations he worked out factors appropriate for calcula-
tion in everyday life, optimizing the problem like a modern mathematician. I 
have some doubts, however, whether these muqarnas factors were often applied 
in practice, as they are given in decimal fractions to the sixth position, or in 
sexagesimal fractions to the fourth position. For the calculation of arches, the 
factors contain decimal fractions to the third position only; this is sufficient 
for all practical purposes. Another possibility why al-Kåsh• worked out factors 
for calculating a muqarnas could be that he knew how to do it. As in modern 
mathematical research, formulas are discovered for their own sake, only later, 
may practical applications be found and developed.

Notes

1. Vogel, pp. 43–53.

2. Creswell, pp. 608–610. Compare also G. R. D. King’s criticism on Creswell’s appraisal 
of the early level architecture in the Arabian peninsula.

3. Frishman, p. 13.

4. See Toomer, DSB VII, pp. 358–365.

5. Rosen [1831] trans., p. 3.

6. Rosen l.c. trans., pp. 70–86.

7. See Youschkevitch, DSB I, pp. 39–43.
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8. Edited by Saidan [1971], based on the Leiden ms. Or. 103, which contains only the 
first three parts of the ms., and the Cairo ms. Riyå∂a 42 M.

9. Saidan [1974] pp. 369–375.

10. Necipo=lu [1995] pp. 133–138 and p. 176, note 13.

11. See Sesiano, Enc. Hist. pp. 475–476.

12. Hochheim, Repr. pp. 204–222.

13. See Vernet and Bruin.

14. Hogendijk [1990].

15. Rebstock [1993].

16. According to Am•n A˙mad Råz• (d. 1010 A.H.) in Tadhkira-ye haft iql•m [The 
account of the seven climates], Ms. Sepahsålår (Tehran) No. 2733, fol. 774. (Courtesy 
of M. Bagheri).

17. Hill [1996] pp. 98–101.

18. This is essentially Creswell’s theory, see Warren, p. 59f.

19. Rebstock [1993] pp. 133–134.

20. This example implies p = 4!

21. Rebstock [1992] pp. 202–218.

22. All five constructions are performed in the video “Qubba for al-Kåsh•.”

23. This detailed account will be published in a forthcoming paper together with a dis-
cussion on the accuracy of the factors and the calculations.

24. Golombek [1988] pp. 153–157.

25. Bulatow [1978].

26. Saidan [1971] l.c., p. 268.

27. Hochheim [1877–80] part 2, p. 28.

28. Nesselmann [1843] p. 33 and note 19. Mu˙ammad Bahå< al-D•n al->Åmul• is men-
tioned neither in DSB nor in Enc. Hist. >Åmul is a town in Syria.

29. Cf. Rebstock [1992] p. 216: In the edition Riyå∂•yåt, Aleppo 1976, p.88, the term in 
brackets does not occur. However, it is written in the Leningrad Ms.

30. Necipo=lu [1995] pp. 140–141,with some minor changes.

31. Reprinted in 1986. 

32. See Rosenfeld/Grigorian, DSB XIII, pp. 288–295.

33. Rashed, Vol. I, pp. 319–457; Suter, Repr. Vol. II, pp. 435–476.
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34. See Dold-Samplonis, DSB IX, pp. 239–241.

35. Rashed, Vol. I, pp. 850–871; Suter, Repr. Vol. II, pp. 435–476.

36. Rashed, Vol. I, pp. 850–852; Suter, Repr. Vol. II, p. 463.

37. See Sabra, DSB VI, pp. 189–210.

38. Rashed, Vol. II, pp. 207–293; Suter, Repr. Vol. II, pp. 369–412.

39. Grabar [1992] p. 147.

40. Necipo=lu [1995] p. 349.

41. Dold-Samplonius [1992/3] p. 202.

42. Dold-Samplonius 1992/93 and 1996, see also Özdural.

43. Golombek/Wilber [1988] pp. 187–194.

44. Necipo=lu [1995] pp. 44, 159.
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V

Seventeenth-Century Transmission of Astronomy





One of the most neglected areas in the history of Islamic astronomy is the 
development of that science in South Asia, the influence of Sanskrit astronomy 
on it, and its impact on the older Indian tradition of the siddhåntas.1 Vast quanti-
ties of relevant manuscripts in Persian, Arabic, and Sanskrit survive in public 
and private collections in South Asia and, for the Persian and Arabic material, 
in Iran and Central Asia as well, but little attention has until very recently been 
paid to this important material. This chapter will deal with one aspect of this 
general question, namely, with the presentation of Muslim planetary models by 
the Bråhman$a scholar, Nityånanda, who wrote at Delhi during the reign of Shåh 
Jahån, his sources, and his influence.2

Far•d al-D•n Mas>¥d ibn Ibråh•m al-Dihlaw• apparently left the service 
of the >Ådil Shåh of B•jåp¥r on the death of his patron, Ibråh•m >Ådil Shåh II, 
in 1627, and seems to have joined the entourage of Shåh Jahån at Junnar in 
Mahåråß†ra before the future Emperor marched toward Delhi on 2 December 
of that year.3 He cast the horoscope, presumably beforehand, for Shåh Jahån’s 
enthronement, which took place on 14 February 1628.4 Shortly after that event, 
he was asked by Shåh Jahån’s waz•r, Åsaf Khån, to prepare a new z•j, the Z•j-i-
Shåh-Jahån•, that would be based on Ulugh Beg’s Z•j-i-jad•d, but would employ 
a new calendar, the ta<r•kh-i-Ilåh• Shåhishån•.5 Far•d al-D•n was able to pres-
ent the enormous Z•j-i-Shåh-Jahån• to the Emperor in October 1629, the very 
month in which he is said to have died.6

Åsaf Khån was impressed by the new z•j, and decided to have it translated 
into Sanskrit. The task of making the translation was assigned to Nityånanda, 
a Bråhman$a residing in Delhi; he completed the translation, which he entitled 
Siddhåntasindhu, in the early 1630s. Uniform copies of gigantic size (45 × 33 
cm. and approximately 440 folia) were prepared,7 and at least eleven were dis-
tributed to worthy individuals (mostly Muslim nobles) in Northern India.8 Four 
copies of the Siddhåntasindhu are kept at the Palace Library in Jaipur. Three 
are perhaps from among the original production; one bears the seal of Shåh 
Jahån.9 The fourth was copied, in identical style, by Gan÷gåråma of Kå∞m•ra 
for Mahåråja Jayasim. ha in 1727.10 The four copies at Jayapura11 are the only 
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complete copies extant; four incomplete manuscripts are preserved in other 
libraries in Råjasthån (Alwar and Bikaner) and Madhya Prade∞a (Ujjain).12

The failure of the Siddhåntasindhu to find favor among the Hindu adher-
ents of the traditional siddhåntas inspired Nityånanda to write an elaborate 
apology for using Muslim astronomy, the Sarvasiddhåntaråja that he com-
pleted in 1639.13 The second and third chapters of this work, on the computa-
tion of the mean and true longitudes of the planets, is the part of this gigantic 
and unpublished work on which we will focus, using manuscripts from Benares 
and London.14

Whereas the Siddhåntasindhu, following Ulugh Beg, presents the mean 
motions of the Sun, the Moon, and the planets as motions in multiples of 30 
Arab years, single Arab years, Arab months, days, and hours, and also presents 
motions in solar years and solar months given Persian names, Nityånanda in the 
Sarvasiddhåntaråja has converted these mean motions approximately into inte-
ger numbers of revolutions in a Kalpa of 4,320,000,000 years in order to make 
them comparable and comprehensible to his expected audience of siddhåntins. 
In the course of his presentation of the parameters and models of the Siddhån-
tasindhu, which he calls the Romakasiddhånta or Roman Z•j, he compares them 
with those of the Bråhmasphu†asiddhånta composed by Brahmagupta in 62815 
and those of the S¥ryasiddhånta composed by an unknown author in about 
800.16 Though he does not provide the numbers of rotations of these planets in 
a Kalpa according to these two representatives of the Indian tradition, I include 
them for comparison in table 9.1.

The shorter year-length in the Romaka should diminish the number of 
rotations each planet makes in a Kalpa. For instance, the difference in days 

Table 9.1

 Romaka Bråhmasphu†a S¥rya

Sun 4,320,000,000 4,320,000,000 4,320,000,000

Moon 57,750,968,965 57,753,300,000 57,753,336,000

Mars 2,296,968,639 2,296,828,522 2,296,832,000

Mercury’s ∞•ghra 17,936,534,114 17,936,998,984 17,937,060,000

Jupiter 364,356,698 364,226,455 364,220,000

Venus’ ∞•ghra 7,022,180,538 7,022,389,492 7,022,376,000

Saturn 146,835,981 146,567,298 146,568,000

Days 1,577,847,748,101 1,577,916,450,000 1,577,917,828,000

Year in days 6,5;14,33,7,24,31,... 6,5;15,30,22,30 6,5;15,31,31,24
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between the Romaka and the Bråhmasphu†a amounts to about 188,095 years, in 
which there are about 2,508,000 rotations of the Moon; the Romaka’s rotations 
of the Moon are 2,331,035 less than those of the Bråhmasphu†a. However, the 
rotations of Mars, Jupiter, and Saturn according to the Romaka are all greater 
in number than they are according to the Bråhmasphu†a.

How Nityånanda derived his rotations in a Kalpa from the mean motions 
of the Siddhåntasindhu—that is, of the Z•j-i-Shåh-Jahån•—has yet to be deter-
mined. But the yearly mean motions they imply are easily computed from 

360 R
4,320,000,000

 (the Sun obviously travels 360° in a year).

Moon  13 rotations + 2, 12; 34, 50, 39, . . .°
Mars  3, 11; 24, 50, 34, . . .°
Mercury’s ∞•ghra  4 rotations + 54; 42, 40, 12, . . .°
Jupiter  30; 21, 46, 58, . . .°
Venus’ ∞•ghra 1 rotation + 3, 45; 10, 54, 9, . . .°
Saturn  12; 14, 10, 47, . . .°

Later on, in order to “simplify” the calculations, Nityånanda, in the 
fashion of an Indian karan$a, imagines a period of 10,000,000 days, which he 
equates with 27,379 solar years so that each year equals 6,5;14,36,20, . . . days 
instead of the earlier 6,5;14,33,7, . . . days. Using the ratio of the solar years in 
10,000,000 days to those in a Kalpa, one can easily compute the “integer” rota-
tions of each planet in the shorter period (Table 9.2).

The epoch that Nityånanda chooses is the beginning of the Indian month 
Caitra in the year in which Shåh Jahån was enthroned—that is, 25 February 
1628—at noon at Lan Ÿkå. He gives the epoch mean longitudes of the planets as 
numbers of lapsed days in a period of 10,000,000 days. Since these numbers all 

Table 9.2

Planet Text Computation

Sun 27,379 (27,379)

Moon 366,011 366,010.1...

Mars 14,557 14,557.5...

Mercury’s ∞•ghra 113,677 113,676.9...

Jupiter 2,309 2,309.1...

Venus’ ∞•ghra 44,504 44,504.6...

Saturn 930 930.6...
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have seven digits, on division by 10,000,000 they become decimal fractions of 
a rotation. In the following table the true longitudes of the planets as given in 
the Tuckerman tables are provided for comparison (Table 9.3).

Mars is so far off because its elongation from the Sun is 119°, which 
produces an equation of about –39°.

In the midst of this computation Nityånanda reports on the theory of 
precession according to Maya the Asura.17 This Maya was the person to whom 
the Sun revealed the S¥ryasiddhånta; he is mentioned here because Nityånanda 
claims that the Romaka was revealed to a Yavana by the Sun.18 This theory 
certainly comes from a Muslim, not an Indian source. Nityånanda states that, 
according to Maya, precession amounted to 16;6,32° in 1628; this puts the date 
of coincidence of the tropical and sidereal zero-points in AD 500. He further 
notes that the zero-point was once in Aries 8°, at another time in Aries 10°; 
these are the Babylonian norms for Systems B and A of the Moon.19 It is odd to 
find them surfacing in a seventeenth century Sanskrit poem.

Since the computation of the rotations of the planets in 10,000,000 days 
was somewhat crude, Nityånanda offers a daily b•ja or correction for each 
(Table 9.4).

The longitudes of the apogees of the Sun and the five star-planets and the 
nodes of the latter in 1628 are presented in the following table as they are given 
by Nityånanda (Table 9.5).

The lunar apogee and node rotate respectively 488,327,103 and 
232,088,311 times in a Kalpa or 3095 and 1471 times respectively in 
10,000,000 days; their epoch positions are given as 7,134,658 or 256;50, . . .° 
and 6,765,363 or –243;33, . . .° = +116;26, . . .°.

In an attempt to persuade his readers that the differences between his 
three systems are small, Nityånanda gives the corrections to derive the lon-
gitudes of the apogees and nodes of the S¥ryasiddhånta from those of the 
Romakasiddhånta, and states those of the Bråhmasphu†asiddhånta. He does 
not inform his readers that he has added precession (16;6,32°), as he should, to 
the longitudes in the S¥ryasiddhånta (Table 9.6).

The corrections to the Romaka’s longitudes of the nodes are, in general, 
far too large to convince the reader that there is little difference between that 
text and the S¥ryasiddhånta.

Nityånanda also gives the b•jas or corrections to go from the Romaka’s 
epoch mean longitudes to those of the S¥ryasiddhånta corrected by precession 
(he does not specify this latter correction), and from the mean longitudes of the 
S¥ryasiddhånta to those of the Bråhmasphu†asiddhånta (Table 9.7).

Chapter 3 of the Sarvasiddhåntaråja deals with the computation of the 
true longitudes of the planets from their mean longitudes. It begins with a bald 
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Table 9.3

Planet Lapsed days Epoch mean  True  Differences
  longitudes longitudes

Sun 9,565,549 344;21,35° 346° –2°
Moon 9,589,692 345;13,44° 355° –10°
Mars 2,897,712 104;19,3° 73° +31°
Mercury’s ∞•ghra 9,381,010 337;36,58° (335°)
Jupiter 7,363,135 265;4,22° 270° –5°
Venus’ ∞•ghra 1,087,113 39;8,9° (8°) 
Saturn 5,054,485 181;57,41° 189° –7°

Table 9.4

Sun + 
243°

10,000,000
 =   + 0;0,0,5,14,55,40,48º

Moon + 
121°

10,000,000
 =   + 0;0,0,2,36,48,57,36º

Mars + 
2166°

10,000,000
 =   + 0;0,0,46,47,8,9,36º

Mercury’s ∞•ghra + 
1246°

10,000,000
 =   + 0;0,0,26,54,48,57,36º

Jupiter + 
716°

10,000,000
 =   + 0;0,0,15,27,56,9,36º

Venus’ ∞•ghra + 
2200°

10,000,000
 =   + 0;0,0,47,31,12º

Saturn  + 
2186°

10,000,000
 =   + 0;0,0,47,13,3,21,36º

Table 9.5

Planet Apogees  Nodes

Sun Cancer  5;9,33,15°  

Mars Leo  24;40,23° Taurus  20;40,23°
Mercury Scorpio  7;12,3° Aquarius  7;12,3°
Jupiter Libra  2;15,6° Cancer  10;15,6°
Venus Gemini  25;9,0° Pisces  25;9,0°
Saturn Sagittarius  19;39,6° Cancer  19;39,6°
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statement of the radii of the epicycles in the three siddhåntas (the eccentrici-
ties in place of the manda-epicycles for the Romaka); however, the pulsating 
epicycles of the Sun and the Moon in the Bråhmasphu†asiddhånta are ignored; 
only their values for meridian-crossings are presented (Table 9.8).

The author makes no comment on the fact that the Romaka’s lunar model 
has a crank-mechanism. This, however, like the other elements in Muslim 
astronomy that are not found in Indian science, is called by a Sanskrit name, 
påkßika (relating to the half-months between the syzygies) in order to camou-
flage its foreignness. We shall comment more on this strategy of Nityånanda 
later.

After a long discursus on the geometrical method of computing a Sine-
table in which he is clearly indebted to a Muslim source, he turns to the method 
of computing and applying the equations according to the Romaka. 

In the case of the Sun, using Ptolemy and a table of Sines (R = 60 = 1,0) 
instead of Chords, one should form (see figure 9.1) a triangle whose sides are 

Sink × e
R

 and R ± Cosk × e
R

 

Table 9.6

 Apogees

Planet Romaka ± Correction S¥rya with  Bråhmasphu†a
   precession

Sun 95;93,15º – 1;46,5,15º = 93;23,28º 93;23,32º 77;56,56º

Mars 144;40,23 + 1;28,34 = 146;8,57 146;8,32 128;25,8

Mercury 217;12,3 + 19;22,23 = 236;34,26 236;33,40 224;54,53

Jupiter 182;15,6 + 5;12,43 = 187;27,49 187;25,58 172;35,49

Venus 85;9,0 + 10;49,11 = 95;58,11 95;57,5 81;17,35

Saturn 259;39,6 – 6;55,3 = 252;44,3 252;43,58 238;16,9

 Nodes

Planet Romaka + Correction S¥rya with  Bråhmasphu†a
   precession

Mars 50;40,23º + 5;29,30º = 56;9,53º 56;10,19º 21;53,27º

Mercury 307;12,3 + 89;35,45 = 36;47,48 36;48,48 21;8,34

Jupiter 100;15,6 + 355;31,33 = 95;46,39 95;47,11 82;1,9

Venus 355;9,0 + 80;37,36 = 75;46,36 75;48,50 59;43,55

Saturn 109;39,6 + 6;48,58 = 116;46,36 116;29,17 103;3,9,42
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as the argument, k, lies in the semicircle beginning at 270° from the apogee 
or in that beginning at 90° from the apogee. Nityånanda, since R = 1,0, simply 
forms Sink × e and Cosk × e without informing his reader that the sexagesimal 
point must be shifted one place to the left. The square-root of the sum of the 
squares of these two sides is the distance of the Sun from the earth, SO. Then 

Sind = Sink × e
R

 × R
SO

 = Sink × e
SO

.

Without a hint of irony, Nityånanda states that some extremely clever 
people advocate the ancient Indian “Method of Sines,” in which 

Sind = Sink × e
R

.

Ptolemy’s solution to the problem of finding geometrically the angle 
which corrects the anomaly in the lunar epicycle is quite straightforward. In 
figure 9.2 P1O = P2O = 10;19 and P1C = 49;41. Since angle 2h is given, in the 

Table 9.8
Eccentricities/Manda epicycles’ radii

Planets  Romaka S¥ryasiddhånta Bråhmasphu†asiddhånta

Sun  2;1,20  2;20–2;16,40  2;16,40

Moon  5;12,24  5;20–5;16,40  5;16

Crank mechanism 10;24,48  

Mars  6;4 or 6;14 12;30–12;40 11;40

Mercury  3  5;0–4;40  6;20

Jupiter  2;47  5;30–5;20  5;30

Venus  0;52  2;0–1;50  1;50–1;30

Saturn  3;29  8;10–8;0  5

fi•ghra epicycles’ radii

Planets Romaka S¥ryasiddhånta Bråhmasphu†asiddhånta

Mars 39;43 39;10–38;40 40;36,40–39;30

Mercury 22;30 22;10–22 22

Jupiter 11;47 11;40–12 11;20

Venus 43;10 43;40–43;20 43–43;50

Saturn  6;51  6;30–6;40  5;50
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right triangle P2OL2 the sides P2L2 and L2O can be computed. Similarly, in the 
right triangle P1OL1 the sides P1L1 and L1O are respectively equal to P2L2 and 
L2O. Then CL2

1 = CP 2
1 – P1L

2
1; and CO = CL1 + L1O. Moreover, CL2 = CO + OL2; 

and CP 2
2 = CL2

2 + L2P
2
2. Now, in right triangle CL2P2 angle L2CP2, which equals 

angle ACA´, can be computed.
Nityånanda’s solution, based on the use of the Sine and Cosine functions, 

is more complex, and its interpretation is made difficult by the terminology 
that he has invented to name the parts of the figure. P1O = OP2 he calls the 
påkßa epicycle-radius and measures at 10;24,48; P1C, which is 60–10;24,48 = 
49;35,12, is called the radius of the påkßa eccentric. The elongation of the mean 
Moon from the mean Sun is the påkßa argument; it is to be doubled. The Sine 
of the double elongation is multiplied by the epicycle-radius, P1O, and divided 
by the radius of the påkßa (here one must understand the påkßa eccentric, P1C). 
This produces P1L1, the Sine of angle P1CL1 measured in the units of a circle 
whose radius is 60. 

Sin602h × P1O
60

 = SinP1O2h = P1L1. Also P1L1 = SinP1C ∠P1CL1. 

Therefore, 

Sin60 ∠P1CL1 = Sin602h × 
P1O
60

 × 
60

P1C
 = Sin2h × 

P1O
P1C

.  
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For my understanding of the rest of Nityånanda’s rules I am indebted 
to my colleague, Kim Plofker. The first rule is to take the Sine from the argu-
ment (that is, 2h) increased or decreased by the arc of the previous result (that 
is, angle P1CL1) as the argument lies between 0° and 180° or 180° and 360° 
respectively. In figure 9.2 angle CP1O = 180° – (2h + ∠P1CL1). Therefore, 

2h + ∠P1CL1 = 180° – ∠CP1O = ∠ CP1Q, and 

QC = Sin(2h + ∠P1CL1) × P1C
R

.

Right triangles OQC and OL1P1 are similar to each other. Therefore,

OC
QC

 = 
P1O
P1L1

, or OC = 
QC × P1O

P1L1

.

Since P1L1 = Sin2h × 
P1O

R
,

OC = Sin(2h + ∠P1CL1) × 
P1C
R

 × P1O × 
R

Sin2h × P1O
,

which reduces to:

OC = Sin(2h + ∠P1CL1) × 
P1C

Sin2h
.

Indeed, Nityånanda’s instructions are to multiply Sin(2h + ∠P1CL1) by 
the radius of the eccentric, P1C, and to divide the product by the Sine arising 
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from the original argument—that is, by Sin2h. The result he correctly states to 
be the påkßa hypotenuse, OC.

Now one is instructed to multiply the original Sin2h and Cos2h by the 
epicycle-radius, P1O, and to divide the results by 60; this converts the two Sines 
from base 60 to base 10;24,48, to the lengths P1L1 = P2L2 and L1O = L2O in 
figure 9.2. Then the sum or difference of OC and LO is CL; and CL2 + PL2 = 
P2C

2, the hypotenuse from the opposite point (abhimukhacihna). Finally, 

L2P2 × 
60

P2C
 = Sin∠L2CP2; 

its arc is the correction to the apogee of the epicycle, ∠ACA′.
The rest is straightforward, but expressed as far as possible in terms 

familiar from traditional Sanskrit siddhåntas. The anomaly of the Moon on 
its epicycle is counted from the corrected epicycle-apogee, and the corrected 
anomaly, k′, from the uncorrected apogee. The Sine and the Cosine of k′ are 
multiplied by the radius of the epicycle, r, and divided by the Radius, R = 60. 
The mean påkßika hypotenuse, CO, is increased or decreased by Cosk′ × r

R
 

and 

CO + Cosk′ × r
R 2 + Sink′ × r

R 2 = H 2, 

where H is the distance of the Moon from the earth. Then the lunar equation is 
the arc of 

Sink′ × r
R

 × R
H

 = Sink′ × r
H

.

Following Muslim practice, Nityånanda instructs his readers to reduce the lunar 
longitude on its orbit to its corresponding longitude on the ecliptic.

The computation of the equation of the center according to Nityånanda is 
illustrated in figure 9.3, where A is the apogee, E the equant, D the center of the 
deferent, and O the center of the earth. In order to convert the anomaly at E, k, 
to that at D, k′, we have, analogously to the computation of the solar equation, 
Sind1 = Sink × 

e
R  and k′ = k ± d1. Then CH is Sink′ and HD is Cosk′. In the 

right triangle CHO, HO = HD + e, and CO2 = CH2 + HO2. Then, 

OG = Sind2 × 
CO
R

 = Sink × 
2e
R

 from which Sind2 = Sink × 
2e
CO

.

The equation of the anomaly is computed in a manner similar to that used 
in traditional Indian siddhåntas. The difference is that the distance of the center 
of the epicycle from the earth is now CO rather than R; in this way the influ-
ence of the first, manda, equation on the second, ∞•ghra, equation is accounted 
for. In figure 9.4 CA = CP = r is the radius of the epicycle and ∠ACP = g, 
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the anomaly. Then 

BP = Sing × 
r
R

 and BC = Cosg × 
r
R

. Then 

BO = CO ± BC; PO2 = BO2 + BP2; and Sind = BP × 
R

PO
.

Nityånanda’s algorithm for computing the equation of the center of Mer-
cury is, of course, more complex. It can be understood with the help of figure 
9.5. 

Here OE = ED = DM = DN = e, NC = R, and ∠MDN = ∠DEC = ∠OEH = k. 
Nityånanda begins by subtracting k from 180° (or 180° from k); this yields 
∠NDE. Since in triangle NDE the perpendicular, DF, from D to NE bisects 
∠NDE, 

∠NDF = ∠FDE = 
180° – k

2
.  

Then 2 Sin
180° – k

2
 × 

e
R  = NE. 

Further, since in the right triangle EDF:

∠EDF = 
180° – k

2
, ∠DEF = 90° – 

180° – k
2

 = 
k
2

; 
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therefore ∠CEF = 
3k
2

. 

Then NG = Sin
3k
2

 × NE
R

. 

In triangle ECN ∠CNE = 180° –  3k
2

 + ∠NCE; 
and Sin∠NCE = NG = Sin

3k
2

 × NE
R

. 
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Thus ∠CNQ = 180° – ∠CNE = 180° – 180° –  3k
2

 + arc Sin
3k
2

 × NE
R ; 

and Sin∠CNQ = CQ = Sin  3k
2

 + arc Sin
3k
2

 × NE
R . 

But right triangle CQE is similar to right triangle NGE; therefore, according to 
Nityånanda, 

CE = CQ × NE

NG × NE

R
 
 = Sin  3k

2
 + arc Sin

3k
2

 × 
NE
R  × NE

NG
 × R

NE
 

 = Sin  3k
2

 + arc Sin
3k
2

 × 
NE
R  × R

NG
. 

It is clear that HO = Sink × 
e
R

 and EH = Cosk × 
e
R

; 

and CH = CE + EH. Then CO2 = CH2 + HO2; and Sind = HO × 
R

CO
.

Having provided this much, Nityånanda omits the rules for computing 
Mercury’s equation of the anomaly since they do not differ from those for the 
other planets.

In all of these algorithms for computing planetary equations Nityånanda 
has provided only the final bare rules—presumably derived from a Persian 
commentary on Ulugh Beg’s z•j—but no hint of the geometrical rationales that 
lie behind them. Later on he describes the Muslim system of internesting plan-
etary spheres, and, in the section where he provides the algorithms for these, 
in most manuscripts there are spaces left blank for diagrams; however, in only 
one of the half-dozen or so manuscripts that I have been able to inspect, Alwar 
2005, which was copied in 1846, are any diagrams actually drawn, and they 
completely misrepresent the geometry that we can reconstruct from the rules.

Therefore, though the algorithms are mostly correct and though Nityån-
anda, as we demonstrated at the beginning of this chapter, is doing his best to 
persuade the traditionalists that the so-called Romakasiddhånta is not very dif-
ferent from the S¥ryasiddhånta, he, or the scribes of the Sarvasiddhåntaråja if 
they simply failed to copy his diagrams, has or have failed to provide sufficient 
information for an expert in the S¥ryasiddhånta to understand how the Romaka 
arrives at its results. This problem is made worse by Nityånanda’s introduction 
of a new vocabulary, based on Sanskrit, for referring to the elements of the 
Ptolemaic models without defining these new terms; it had been the practice of 
other scholars attempting to describe Muslim models in Sanskrit to transliterate 
the Arabic/Persian technical terms, and to define them. Thus, Nityånanda refers 
to the various elements of the lunar crank-mechanism by applying the adjective 
påkßa (pertaining to a half-month) to the normal Sanskrit terms: påkßakarn$a 
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(the distance of the center of the Moon’s epicycle from the earth), påkßakendra 
(the double elongation of the Moon from the Sun), påkßapara (the radius of the 
concentric circle bearing the center of the Moon’s deferent), and påkßapratiman$
∂alavyåsårddha (the radius of the Moon’s deferent). The term “opposite point” 
(nuq†at al-mu˙ådhå) is translated as “abhimukhacihna.” Curiously, the equant 
(markaz mu>addal al-mas•r) is called by Nityånanda the “abhicårabindu” or 
“point of magic.”

The most noteworthy later use of chapter 3 of Nityånanda’s Sarvasid-
dhåntaråja is in a manuscript I found in the Paun $∂ar•ka Collection in the Palace 
Library at Jaipur.20 This contains the earliest version, datable to 1726 or 1727, 
of Jagannåtha’s Siddhåntakaustubha in which, on ff. 20v–25v, Jayasim. ha’s 
guru21 paraphrases or copies out all the verses of this chapter containing the 
algorithms and the parameters. He only substitutes the equivalent “sammukha” 
and “unmukha” for “abhimukha;” even “abhicåra” is preserved as the name of 
the equant. Some of the terminology applied by Nityånanda to the elements 
of the lunar crank-mechanism combining the adjective “påkßa” or “påkßika” 
with common Sanskrit astronomical terms such as “karn$a” (hypotenuse) and 
“kendra” (anomaly) appear in about 1732 in Kevalaråma’s Dr$kpakßasårin$•,22 
the poetic version, and in about 1734 in the Sanskrit prose version of de La 
Hire’s Tabulae astronomicae23 and in the Yavanacandracchedyakopayogin•;24 
all three were products also of Jayasim. ha’s court. The Sarvasiddhåntaråja, then, 
provided Jagannåtha with the Sanskrit words to describe Ulugh Beg’s planetary 
models, and Jagannåtha’s successors with some of the terminology with which 
they wrote of European astronomy.
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1  Introductory Remarks

Nothing is known about the characteristics of the earliest known Maghrib• z•j, 
Ibn Ab• l-Rijål al-Qayrawån•’s Óall al->aqd wa-bayån al-raßd (beginning of the 
eleventh century), which seems to have been lost. Two centuries later, Abu’l-
>Abbås Ibn Is˙åq al-Tam•m• al-Tunis• (fl. Tunis and Marrakesh ca. 1193–1222), 
left an unfinished set of tables which survive in a unique manuscript of Hyder-
abad, discovered in 1978 by D. A. King.1 The predominant influence in Ibn 
Is˙åq’s z•j was that of the Andalusian school represented by Ibn al-Zarqålluh 
(d. 1100), Ibn al-Kammåd (fl. Cordova 1116–17) and Ibn al-Hå<im (fl. 1205). 
This influence continued along the thirteenth and fourteenth centuries through 
several “editions” of the z•j of Ibn Is˙åq such as the one prepared by the 
anonymous compiler of the aforementioned collection extant in the Hyder-
abad manuscript (ca. 665 H./1266–680 H./1281), the Minhåj of Ibn al-Bannå< 
of Marrakesh (1256–1321),2 and the two z•jes composed by the Tunisian-
Andalusian astronomer Mu˙ammad ibn al-Raqqåm (d. 1315).3 Andalusian 
influence is also present in two other fourteenth century z•jes, written by two 
astronomers of Constantine, in the Central Maghrib, who were active in Fez: 
the one compiled by Abu’l-Óasan >Al• ibn Ab• >Al• al-Qusan†•n•, the canons 
of which were written in verse,4 and the Z•j al-Muwåfiq of Abu’l-Qåsim ibn 
>Azz¥z al-Qusan†•n• (d. 1354),5 partially based on observations made in Fez 
with an armillary sphere ca. 1344. 

All the aforementioned z•jes share a certain number of characteristics 
among which we should mention that their mean motion tables are sidereal, and 
that they contain tables based on the theory of trepidation that enable the user to 
calculate the amount of precession for a given date and, thus, obtain the tropical 
longitudes of heavenly bodies. Trepidation implies a variation in the obliquity 
of the ecliptic and these z•jes also include tables, based on the model designed 
by Ibn al-Zarqålluh, which implies the existence of cycles that regulate the 
diminution and the expected future increase of the obliquity of the ecliptic. The 
analysis of a limited number of new sources dated between the fifteenth and the 
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early seventeenth centuries (three commentaries on the poem on timekeeping 
written in 1391 by al-Jadhår•,6 and the Kitåb al-adwår f• tasy•r al-anwår, writ-
ten by Ab¥ >Abd Allåh al-Baqqår in 821/1418)7 give some evidence that obser-
vations were made in the Maghrib in the 13th and 14th centuries. The result of 
these observations was that astronomers realized that the observed precession 
of the equinoxes was much larger than the values that could be computed with 
trepidation tables and that the obliquity of the ecliptic stubbornly continued to 
diminish below the limits fixed in obliquity tables. The situation being thus, we 
find a new contact with the East which—at least in the case of al-Andalus—had 
been interrupted in the eleventh century. This brings to the Maghrib of the late 
fourteenth century the Tåj al-azyåj of Mu˙y• al-D•n al-Maghrib• (d. 1283) 
and the Z•j al-Jad•d of Ibn al-Shå†ir (d.1375), and there is evidence of adapta-
tions of these z•jes for their use in specific cities of the Maghrib. These z•jes 
compute directly tropical longitudes, are based on constant precession, reject 
the existence of cycles regulating the obliquity of the ecliptic and they offer 
results that agree with observations much better than those computed with the 
tables of the Andalusian school. In spite of this the Andalusian tradition stayed 
alive until the nineteenth century and coexisted with the “new” Eastern z•jes. 
The reason is clearly explained by the astrologer al-Baqqår: horoscopes were 
cast using sidereal longitudes and my impression is that astrologers used Ibn 
al-Bannå’s Minhåj and other similar sources, while astronomers and conscien-
cious muwaqqits prefered oriental z•jes.8

The last Eastern z•j which was introduced in the Maghrib was Ulugh 
Begh’s Z•j-i Sul†ån• (1393–1449),9 usually called al-Z•j al-Jad•d in Maghrib• 
sources. I have no evidence that this z•j was known in the Maghrib before the 
end of the seventeenth century, but it is obvious that it became very popular 
during the eighteenth and nineteenth centuries. The Arabic translation of the 
introduction to this z•j, made by Óasan b. Mu˙ammad, known as Qå∂• Óasan 
al-Makk• (fl. 17th c.) reached Morocco, for the Óasaniyya Library preserves a 
manuscript of this work dated in 1291/1874.10 Interestingly, however, there were, 
at least, two Tunisian recensions of this z•j prepared by Mu˙ammad al-Shar•f, 
called Sanjaq Dår al-T¥nis• and by >Abd Allåh Óusayn Quß>a b. Mu˙ammad b. 
Óusayn al-Óanaf• al-T¥nis•.11 Both authors are undated but MS 16650 of the 
Tunis National Library (Khald¥niyya collection) contains a copy of Quß>a’s 
recension—under the title Ghunyat al-†ålib f• taqw•m al-kawåkib—where it 
is stated that the work (not the copy) was finished on Thursday 22nd Shawwål 
1091 H./15 November 1680 (which was a Friday), and that the tables have 
been adapted to the longitude of Tunis (41;45° from the western meridian).12

As for Sanjaq Dår’s Z•j al-Shar•f—also called al-Z•j al-Mukhtaßar f• >ilm 
al-ta>d•l wa l-taqw•m—I have been able to study two manuscripts of this work, 
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extant in MSS 1816 of the National Library in Tunis13 (MS Ta hereafter) and 
18104 of the library of the late Tunisian scholar Óasan Óusn• >Abd al-Wahhåb, 
now also in the Tunis National Library14 (MS Tb hereafter). MS Tb is dated in 
1107/1695–1696 (fol. 62 r).15 In this z•j the mean positions of the Sun, Moon 
and planets are given, in intervals of thirty years, between 1080/ 1669–1670 and 
1290/1873–1874; on the other hand, the positions (?) of the lunar mansions are 
given, according to the observations of Ulugh Begh, for the end of year 1090/
1679–1680 (MS Ta, fol. 36r; MS Tb, fol 90 r) and the day, hour and minute of 
the spring equinox is given between years 1090/1679 and 1205/1790. All this 
evidence points to a work made in the late seventeenth century,16 and this agrees 
with the presumed date for Quß>a’s Ghunya: commentaries on the introduction 
of this z•j were written towards the end of the seventeenth or the beginning of 
the eighteenth century. One of them was written by A˙mad b. Mu˙ammad B¥ 
Dayda˙ al-Qåd•r• al-Qayrawån• (fl. before 1150/1737–1738), who praised, in 
his introduction, the importance of Sanjaq Dår’s z•j but added that this work 
was difficult to understand and to use. For that reason commentaries had been 
written by his masters al-˙åjj Ab¥ >Abd Allåh Mu˙ammad al-Qal• and, before 
him, by Abu’l-Óasan >Al• b. Måm• al-Óanaf•, known as Karbåßo (or Karbåßa) 
(before 1163/1749–1750).17 Al-Qål•’s commentary was lost in the time of al-
Qad•r•, while the work of Karbåßo contained many mistakes and al-Qad•r• 
wrote, for that reason, his Óåshiya >alå shar˙ al-Shar•f al-Tunis• Sanjaq Dår 
li-z•j al-Sul†ån Ulugh Beg,18 which, apparently, is not a very interesting work.

Sanjaq Dår’s z•j, like Quß>a’s Ghunya, is computed for 41;45° of longi-
tude and it contains tables of oblique ascensions for a latitude of 36;50° (MS 
Ta, fol. 28 r; MS Tb, fol. 82 r), id. for the division of the houses for the same 
latitude (MS Ta, fols. 28 v–31 r; MS Tb, fols. 82 v–85 r), id. of half of daylight 
for the same latitude (MS Ta, fol. 33 v; MS Tb, fol. 87 v), lunar longitude at 
sunset for a latitude 36;40° (MS Ta, fol. 35 r; MS Tb, fol. 89 r), lunar parallax 
in longitude and latitude also for 36;40° (MS Ta, fol. 36 v; MS Tb, fol. 90 v) 
and ascendants of anniversaries for the same latitude (MS TA, fol. 45 v; MS Tb, 
fol. 98 r)): 36;50° is the modern value for the latitude of Tunis and it does not 
appear attested in any other historical source, while 36;40° is one of the three 
values for the latitude of Tunis given by al-Khwårizm•19 and it is systematically 
used by the compiler of the Hyderabad recension of the z•j of Ibn Is˙åq. Apart 
from this, it is interesting to note that the prologue of the Z•j al-Shar•f states that 
the author is going to follow the ˙ab†aq method, which means that planetary 
equations are computed in a simplified way using double argument tables. This 
type of tables is documented in the East from the time of Ibn Y¥nus (d. 1009),20 
but I do not know of any instance in which they appear in the Maghrib before 
the Z•j al-Shar•f for the computation of lunar or planetary equations. In spite 
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of this, Ibn al-Kammåd (fl. Cordova 1116) used double argument tables for 
the computation of time from mean to true syzygy21 and for the calculation of 
solar eclipses,22 and the Hyderabad recension of Ibn Is˙åq’s z•j contains a set 
of double argument planetary latitude tables, based on Ptolemaic parameters, 
attributed to an otherwise unknown Ibn al-Bay†år.23 In the equation tables of the 
Z•j al-Shar•f one enters the table in the vertical sense with the mean anomaly of 
the Moon or the planet (tabulated from 0° to 360° with 6° intervals) and in the 
horizontal sense with the zodiacal sign of the markaz (the double elongation in 
the case of the Moon, and the mean longitude of the planet computed from the 
apogee): the total equation (center + anomaly) will be read directly in the inter-
section of the two and will be added to the mean longitude of the planet.

The present chapter intends to begin the study of this set of double argu-
ment equation tables with the case of the Moon, which seems particularly 
accessible. The Z•j al-Shar•f contains two different sets of tables for the compu-
tation of the solar and lunar longitudes: on the one hand, mean motions of the 
Sun, Moon, solar apogee, lunar nodes, and double elongation calculated to the 
precision of minutes (MS Ta, fols. 10 r and v; MS Tb, fols. 63 v–64 r); a table 
of the solar equation (MS Ta, fol. 10 r; MS Tb, fol. 63 v), also calculated to the 
precision of minutes and with an interval of 6° of the argument (tabular maxi-
mum 3;52° for arguments 264°–270°, the table being obviously displaced verti-
cally 1;56°); the aforementioned double argument table for the lunar equation 
to the precision of minutes (MS Ta, fols. 11 r and v; MS Tb, fols. 65 v–66 r).

The second set of solar and lunar tables is far more precise. The solar 
mean motion tables (MS Ta, fol. 23 r; MS Tb, fol. 78 r) give the mean motion 
of the Sun and of the solar apogee (to the precision of thirds), for hours, days, 
lunar months, lunar years mabs¥†a, and the positions of the markaz (solar lon-
gitude from the apogee) for the end of years 1080–1290 H. in 30-year intervals. 
Here, as in the rest of the z•j, the system of intercalation is the same as that used 
by Ulugh Beg, in which years 2, 5, 7, 10, 13, 15, 18, 21, 24, 26, and 29 of the 
30-year cycle are leap years (kab•sa). The corresponding solar equation table 
(MS Ta, fol. 24 r; MS Tb, fol. 78 r) is calculated for every degree of the argu-
ment from 0° to 359°, to the precision of thirds, it has a vertical displacement 
of 1;55,53,12°,24 and it reaches a tabular maximum of 3;51,46,24° for an argu-
ment of 268°. As for the Moon, the mean motion tables (MS Ta, fols. 24 v–25 
r; MS Tb, fols. 78 v–79 r) give the corresponding mean motions in longitude 
(wasa†), anomaly (khåßßa), double elongation (markaz) and nodes (jawzahar) 
for the same periods, computed to the precision of thirds (longitude) or seconds 
(the rest). Three other tables (MS Ta, fols. 25 v–26 v; MS Tb, fols. 79 v–80 v) 
tabulate more or less standard lunar equations which will be described in detail 
below. It is easy to see that—with the exception of the double argument equa-
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tion tables of the first set and the lunar equations of the second—the first set is 
just the result of a rounding of the second one to the precision of minutes.

2  Mean Solar and Lunar Motions25

All the mean motion values derive from Ulugh Beg’s Z•j-i Sul†ån•.26

•  Precession/motion of the apogees: the analysis of the table of single years and that 
of positions for 1080–1290H. gives two different results

0;0,0,8,27,14,19 (years)
and a value between

0;0,0,8,27,14,24,31,41,45,32
and

0;0,0,8,27,14,28,52,55,30,50
for the table of periods. This corresponds, 
precisely, to a precession of 1° in 70 Persian years. 

•  Sun: two slightly different parameters appear to have been used.
0;59,8,11,10,28,20° (days, months, positions 1080–1290H.)
0;59,8,11,10,28,37° (single years)

•  Lunar longitude: the different sets of tables are mutually compatible and the mean 
motion parameter used lies between

13;10,35,1,47,53,43,49,40,23,58°
and

13;10,35,1,47,53,45,38,5,22,28°

•  Lunar anomaly: the underlying parameter is
13;3,53,55,54,24°

•  Double elongation: the underlying parameter is

24;22,53,23,46,8,59,46,47,36°

It is easy to check that this daily parameter does not correspond to the 
double value of the difference between the mean motion in longitude of the 
Moon and that of the Sun. For the computation we begin subtracting the daily 
motion of the apogee from the rounded value of the lunar mean motion in lon-
gitude:

13;10,35,1,47,53,45° (±0,1) – 0;0,0,8,27,14,27° (±0,2) = 
13;10,34,53,20,39,18° (±0,3).27 

and then,

13;10,34,53,20,39,18° (± 0,3) – 0;59,8,11,10,28,20° = 
12;11,26,42,10,10,58° (± 0,3)

The corresponding mean motion in double elongation will be

24;22,53,24,20,21,56° (± 0,6)
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This inconsistency is already present in Ulugh Beg’s tables and it may 
be the reason (?) of the incoherence we find in the tables of positions for years 
1080–1290. Table 10.1 collects all the information on positions of the solar 
center (col. 1), solar apogee (col. 2), lunar longitude (col. 4), and double elon-
gation (col. 7): the values transcribed are those of the two manuscripts of the Z•j 
al-Shar•f. A control of errors has been made in all the cases: amounts between 
parentheses in col. 1 correspond to the difference (expressed in thirds) between 
the tabular and the recomputed value. Columns 3, 5, 6, 8 have been calculated 
from the corresponding tabular values and column 9 contains line-by-line dif-
ferences in column 8.

Table 10.2 corresponds to positions also of the solar center (markaz, col. 
1), solar apogee (col. 2), lunar longitude (col. 4), and double elongation (col. 7) 
for years 841 H.–871 H., at one year intervals, as they appear in Ulugh Beg’s 
Z•j-i Sul†ån•. An asterisk (*) marks the leap-years (kab•sa). Here, once more, 
we find a disagreement between the values of the double elongation computed 
from the solar and lunar positions and those appearing in the table. It is easy 
to check, however, that the positions in the Z•j al-Shar•f derive from those in 
the Z•j-i Sul†ån•. To establish this, I have compared two sets of positions: those 
corresponding to 841 H. nåqißa (which means midday of the last day of 840) 
and those corresponding to the last day of 1080: the interval between these two 
dates should be 85048 days but the actual interval used for the recomputation is 
one day less (?). On the other hand a correction has been introduced to account 
for the difference in geographical longitude between Samarqand (longitude 
99;16° in Ulugh Beg’s Z•j) and Tunis (41;45° in the Z•j al-Shar•f): the differ-
ence in longitude (57;31°) corresponds to 3h 50m 4s or 0;9,35,10d. The positions 
used in the two z•jes are:

  Solar markaz Solar apogee Lunar longitude Double elongation

 841 18;26,0,13° 90;30,4,48° 115;51,56,28° 25;12,49°

1080 321;32,2,24° 93;49,47,58° 51;1,29,2° 2;26,56°

For n = number of revolutions in each case, we can see that:

•  Solar markaz:
18;26,0,13° + 0;59,8,11,10,28,20 * 85047;9,35,10d = 360° * n + 321;32,2,27,9°

•  Solar apogee:
90;30,4,48° + 0;0,0,8,27,14,26° * 85047;9,35,10d = 93;49,47,57,28°

•  Lunar longitude:
115;51,56,28° + 13;10,35,1,47,53,45° * 85047;9,35,10d = 360° * n + 51;1,29,2,25°

•  Double elongation:
25;12,49° + 24;22,53,23,46,9° * 85047;9,35,10d = 360° * n + 2;26,55,2°
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3  Solar and Lunar Equations

As I have previously stated, the Z•j al-Shar•f contains two displaced tables of 
the solar equation, the first being the result of a rounding, to the approxima-
tion of minutes, of the second one, which was copied from Ulugh Beg’s Z•j-i 
Sul†ån•. Table 10.3 contains excerpts of the aforementioned second solar equa-
tion table of the Z•j al-Shar•f: the amounts between parentheses correspond to 
the differences, in thirds, between tabular and recomputed values, an eccentric-
ity of 2;1,20p having been used for the recomputation.28

The set of lunar equation tables also derive from Ulugh Beg’s Z•j-i Sul†ån•. 
The lunar equation of the center, called ta>d•l awwal (“first equation”) in the Z•j 
al-Shar•f (excerpts in table 10.4), although displaced vertically 13;15,34°, is 
a standard table calculated for an eccentricity of 12;33,22p, the radius of the 
deferent being 60p. The four tables (see excerpts below in tables 10.5, 10.6, 

Table 10.3
Solar Equation

0 1;55,53,12° 180 1;55,53,12°
10 1;36,24,49 190 2;16,41,50 (+1)
20 1;17,28,37 (+1) 200 2;36,48,32
30 0;59,36,8 210 2;55,33,19 (+2)
40 0;43,17,44 220 3;12,19,28
50 0;29,1,47 230 3;26,35,19
60 0;17,14,5 240 3;37,55,7 (+1)
70 0;8,17,7 250 3;45,59,46 (+1)
80 0;2,29,14 260 3;50,37,13
  268 3;51,46,24
  269 3;51,[45],291

90 0:0,3,57 270 3;51,[4]2,272

  271 3;51,37,19
92 0;0,0,0
100 0;1,9,11 280 3;49,17,10
110 0;5,46,38 (–1) 290 3;43,29,17
120 0;13,51,17 (–1) 300 3;34,32,19
130 0;25,11,5 310 3;22,44,37
140 0;39,26,57 320 3;8,28,40
150 0;56,13,17 330 2;52,10,16
160 1;14,57,52 340 2;34,17,47 (–1)
170 1;35,4,34 (–1) 350 2;15,21,35

1. 45' is legible in MS Tb fol. 78 r.

2. 42' is also legible in MS Tb, fol. 78 r.
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10.7, 10.8) designed for the computation of the equation of anomaly are not so 
standard:29 the first, called ta>d•l thån• (second equation), is a table displaced 
vertically 7;37,28°, but, if we subtract this constant from the tabular values, we 
will discover that the two halves of the table are not symmetrical. The solution 
to the difficulties posed by this table can be found in the instructions, given in 
the canons, for the computation of the lunar equation of anomaly (MS Ta, fol. 
3v; MS Tb, fols. 56 v–57 r):30

•  With the mean motion tables obtain the mean longitude (lm) and the mean anom-
aly (am) of the Moon as well as the markaz (double elongation, 2f ).

•  Enter the table of the lunar equation of the center (ta>d•l awwal) with 2f and obtain 
the equation of the center (h).

•  Add h + am = av (true anomaly, al-khåßßa al-mu>addala).

•  Enter with av the table of the “second equation” (ta>d•l thån•) and obtain g.

Table 10.4
Lunar Equation of the Center

0 13;15,34° 180 13;15,34°
10 14;44,3 190 9;43,4 (–1)
20 16;[1]2;2[8]1 200 6;30,10 (–1)
30 17;40,8 (+1) 210 3;51,33 (–1)
40 19;6,57 (+1)2 220 1;54,[4]33

50 20;31,57 230 0;40,26
60 21;53,58 240 0;5,1 (–1)
  246 0;0,0
70 23;11,11 250 0;2,34
80 24;21,6 260 0;26,32
90 25;20,20 270 1;10,[4]84

100 26;4,36 280 2;10,2
110 26;28,34 290 3;19,57
114 26;31,8
120 26;26,7 (+1) 300 4;37,10
130 25;50,42 310 5;59,11
140 24;36,25 320 7;24,13 (+1)
150 22;39,35 (+1) 330 8;51,0 (–1)
160 20;0,58 (+1) 340 10;18,48
170 16;48,4 (+1) 350 11;47,5

1. 16;12,20° in MS Tb, fol. 79 v.

2. 19;6,55° in MS Tb, fol. 79 v.

3. 43" are legible in MS Tb fol. 79 v.

4. 48" are clearly legible in MS Tb, fol. 79 v.
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Table 10.5
Ta>d•l Thån• (“Second Equation”) 
First Table for the Computation of the Lunar Equation of Anomaly

0 7;37,28° 180 7;37,28°
10 6;27,24 (–1) 190 8;34,7 (+1)
20 5;18,48 (–1) 200 9;28,32 (+1)
30 4;13,7 210 10;18,38 (+1)
40 3;11,49 220 11;2,38
50 2;16,23 (–1) 230 11;39,51

60 1;28,22 (–1) 240 12;6,59
70 0;49,[1]72 (–2) 250 12;25,43 (+2)
80 0;2[4],403 260 12;34,59 (–1)
  265 12;36,10 (+1)
90 0;3,54 270 12;3[5],34 (+1)
98 0;0,0 (–6)
100 0;0,1[8]5 280 12;26,13 (+1)
110 0;10,53 (–2) 290 12;[9],10 (+1)6

120 0;36,23 (–2) 300 11;44,39
130 1;16,57 (–1) 310 11;13,39 (+1)
140 2;12,0 (–1) 320 10;37,6
150 3;20,13 330 9;56,8 (+1)
160 4;39,21 (–1) 340 9;11,47
170 6;6,21 350 8;25,11

1. 11;39,35° in MS Tb, fol. 80 r.

2. 0;49,47° in Ta (fol. 26 r); 0;49,17° in Tb (fol. 80 r).

3. 0;20,40° in MS Tb, fol. 80 r.

4. 12;34,3 in MS Tb, fol. 26 r; 12;35,3° in MS Ta, fol. 80 r.

5. 0;10,13° in MS Tb, fol. 80 r.

6. 12;10,9° in MS Ta, fol. 26 r; 12;9,10° in MS Tb, fol. 80 r.

•  Enter with av the table of the “variation” (ikhtilåf ) and obtain ∆g.

•  Enter with the markaz (2f ) the first table of the “minutes of the anomalies” 
(daqå<iq al-˙ißaß) if 0° < av < 180° and obtain m1. If 180° < av < 360°, then do the 
same with the second table of the “minutes of the anomalies” and obtain m2.

•  Multiply m⋅∆g.

•  Add g + m⋅∆g and you will obtain the “corrected equation” [of anomaly] (ta>d•l 
mu˙kam).

•  The true longitude of the Moon in its “inclined sphere” (falak må<il) will be: 
lv = lm + g + m⋅∆g. 

Instructions are given, after this, to calculate the equation of time and to 
obtain the true longitude of the Moon on the ecliptic.
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Table 10.6
Ikhtilåf al-Qamar (“Variation of the Moon”) 
Second Table for the Computation of the Lunar Equation of Anomaly

0 0;0° 90 2;35,59 (–1)
10 0;22,21 (+1) 100 2;39,39 (–1)
  102 2;39,49
20 0;44,21 (+1) 110 2;38,20
30 1;5,41 (–1) 120 2;31,34 (+2)
40 1;26,1 130 2;18,54 (+1)
50 1;44,54 140 2;0,18 (+1)
60 2;1,55 (+1) 150 1;36,4 (–2)
70 2;16,29 (+1) 160 1;7,3
80 2;28,3 (–1) 170 0;34,28 (–1)

Table 10.7
Daqå<iq al-Óißßa (“Minutes of the Anomaly”)
First Function of Interpolation for the Computation of the Lunar Anomaly

0/360 60;0' 90/270 33;12'
30/330 56;46 (–1) 120/240 17;24 (+1)
60/300 47;24 (+1) 150/210 4;49 (+2)
  179/181 0;1 (–1)

Table 10.8
Daqå<iq al-Óißßa (“Minutes of the Anomaly”)
Second Function of Interpolation for the Computation of the Lunar Anomaly

0/360 0;0' 90/270 26;48'
30/330 3;14 (+1) 120/240 42;36 (–1)
60/300 12;36 (–1) 150/210 55;11 (–2)
  179/181 59;59 (–3)

Following the logic of the instructions I have just summarized, we can see 
that the table of the “second equation” (see table 10.6) computes two different 
functions:

•  For 0° < av < 180°, the funcion involved is the lunar equation of anomaly for 
the minimum distance of the center of the lunar epicycle from the center of the 
Earth (gR-e). The table is displaced vertically 7;37,28° and, as the equation of 
anomaly is negative for 0° < a < 180°, it gives:

7;37,28° – gR-e.
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The table can be recomputed using a radius of the epicycle of 6;17,46°,31 
an eccentricity of 12;33,22p and a radius of the deferent of 60p. The choice of 
the constant of displacement is inadequate and it corresponds to an error in 
the computation of the maximum value of the table, which should be 7;37,34° 
instead of 7;37,28°. The mistake was already present in Ulugh Beg’s z•j and 
7;37,28° is explicitely mentioned by M•ram Chalab•, in his commentary on 
Ulugh Beg’s canons,32 as the amount for the displacement and for the maximum 
equation.33

The table of the “variation” (ikhtilåf) is a standard table of differences 
between the equation of anomaly for minimum (gR-e) and for maximum (gR+e) 
distances:

gR-e – gR+e .

The interpolation function involved for the aforementioned values of the 
true anomaly (m1) decreases monotonically from 60´ (for 2f = 0°) to 0´ (for 2f 
= 180°). It can be recomputed using the expression:

m1 = (max g2f – max gR-e) / (max gR-e – max gR+e)

in which max gR-e = 7;37,28°, and

max gR+e = 4;58,42°. 

It is easy to see the logic of the system for the computation of the lunar 
equation of anomaly at syzygies in which 2f = 0°, m1 = 60´ and g (av) = gR+e :

7;37,28° – g (a) = 7;37,28 – gR-e + 60´(gR-e – gR+e) = 7;37,28° – gR+e . 

At quadratures, 2f = 180°, m1 = 0´ and g (av) = gR-e :

7;37,28° – g (a) = 7;37,28 – gR-e + 0´(gR-e – gR+e) = 7;37,28° – gR-e . 

•  For 180° < av < 360°, the funcion involved is the lunar equation of anomaly 
for the maximum distance of the center of the lunar epicycle from the center of 
the Earth (gR+e). The table is also displaced vertically 7;37,28° and, as the equa-
tion of anomaly is positive for 180° < a < 360°, it gives:

7;37,28° + gR+e .

The interpolation function involved for the aforementioned values of the 
true anomaly (m2) increases monotonically from 0´ (for 2f = 0°) to 60´ (for 2f = 
180°). It can be recomputed using the expression:

m2 = (max g2f – max gR+e) / (max gR-e – max gR+e).

Again, at syzygies, 2f = 0°, m2 = 0´ and g (av) = gR+e :

7;37,28° + g (a) = 7;37,28 + gR+e + 0´(gR-e – gR+e) = 7;37,28° + gR+e . 

At quadratures, 2f = 180°, m2 = 60´ and g (av) = gR-e :

7;37,28° + g (a) = 7;37,28 + gR+e + 60´ (gR-e – gR+e) = 7;37,28° + gR-e . 
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4  Habtaq Tables of the Combined Lunar Equations

The Z•j al-Shar•f contains, as we have seen, a set of double argument tables to 
calculate the lunar equation of anomaly (MS Ta, fols. 11 r and v; MS Tb, fols. 
65 v and 66 r): see samples below, in tables 10.9 and 10.10. The arguments 
are the markaz (double elongation), at intervals of 30°, and the mean anomaly 
(at intervals of 6°): 720 values of the equation of anomaly are computed and I 
have recalculated all of them. On the whole, the calculator did a good job and 
errors have usually an amount of 1´, with the only exception of the equations 
calculated for a double elongation of 240°, in which errors are systematic and 
reach a maximum of ± 8’.34 It has been established that these ̇ ab†aq tables have 
been calculated using the lunar equation tables that I have just described and 
that derive from Ulugh Beg’s Z•j-i Sul†ån•. For the recomputation of the ˙ab†aq 
tables I have used Benno van Dalen’s Table Analysis and, especifically, the sub-
programme called Table calculator. The procedure used for the recomputation 
has been the following one:

Table 10.9
Óab†aq Table for the Lunar Equation of the Anomaly for 0o < a < 180o

Markaz (double elongation)

Mean  0 60 120 180 240 300 330
anomaly

0 6;35 (+1) 5;44 4;53 6;5 7;37 7;13 6;54
12 5;40 (+1) 4;47 3;45 4;44 6;23 (+2) 6;11 5;57
24 4;49 3;55 2;45 3;28 5;10 (+3) 5;12 5;3
36 4;4 3;11 1;54 2;20 4;2 (+4) 4;17 4;15 (+1)
48 3;27 2;37 1:16 1;23 3;1 (+5) 3;30 3;33
60 2;59 2;15 0;53 0;39 2;10 (+7) [2];511 3;1
72 2;43 2;6 0;46 0;10 1;30 (+7) 2;23 2;39
84 2;39 2;11 0;57 (–1) 0;0 (+5) 1;4 (+8) 2;8 2;30
96 2;4[8]2 2;31 1;28 0;10 0;54 (+8) 2;6 (–1) 2;35
108 3;11 3;6 2;17 (–1) 0;41 1;2 (+8) 2;20 [2];533

120 3;47 3;56 3;25 1;34 (+1) 1;28 (+7) 2;49 3;24 (–1)
132 4;34 (–1) 4;57 4;47 2;47 (+1) 2;13 (+6) 3;32 (–1) 4;9
144 5;32 6;8 6;20 4;17 3;16 (+5) 4;29 5;5
156 6;36 (–1) 7;24 7;56 (–1) 6;0 4;34 (+4) 5;36 6;9
168 7;44 (–1) 8;41 9;33 (–1) 7;49 6;2 (+1) 6;50 7;49

1. MS Ta 3;51°

2. MS Ta 2;43°

3. MS Ta 3;53°

. .
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1.  For 0° < av < 180°.

1.1  Enter a table T1(cm) of the lunar equation of center h as a function 
of the mean centrum, for e = 12;33,22p, displaced vertically 13;15,34°, 
for arguments comprised between 0° and 330°, with intervals of 30°. The 
actual values entered were those that appear above in table 10.4.

From here on all the steps are given for one particular value of cm.

1.2  Enter a table T2(cm) of the function of interpolation m1 for arguments 
0, 30, 60...360°. The values entered are those of table 10.7 above.

1.3  Add 
h + am = av 

to obtain the true lunar anomaly by adding, for each particular value of cm, 

am + T1(cm), for am = 0, 6, 12...174°.

Table 10.10
Óab†aq Table for the Lunar Equation of the Anomaly for 180o < a < 360°

Markaz (double elongation)

Mean  0 60 120 180 240 300 330
an.

180 8;52 9;54 11;3 9;38 7;37 (–1) 8;7 8;29
192 9;55  10;59 12;19 11;[1]91  9;12  9;22 9;[3]62 
 (–1)   (+1) (–3)  (–1)
204 10;51 11;53 13;20 12;46 (+1) 10;41 (–5) 10;31 10;37
216 11;36 (–1) 12;33 14;2 13;55 (+1) 11;59 (–6) 11;31 11;28
228 12;10 12;59 14;24 14;43 13;2 (–7) 12;[1]73 12;7
240 12;30 13;9 14;28 15;9 13;47 (–8) 12;50  12;32 
      (+1) (–1)
252 12;36 13;5 14;14 15;14 14;13 (–8) 13;7 (+1) 12;44
264 12;30 (+1) 12;47 13;45 15;0 14;21 (–8) 13;9 (+1) 12;42
276 12;11 12;17 13;2 14;28 14;154 (–3) 12;57 (+1) 12;27
288 11;41 11:36 12;7 13;41 13;45 (–7) 12;32 (+1) 12;0
300 11;2 10;47 11;3 12;41 13;5 (–6) 11;55 11;23
312 10;16 9:51 9;53 11:31 (–1) 12:13 (–5) 11;10 (+1) 10:39 
       (+1)
324 9;24 8;51 8;39 10;14 11;12 (–4) 10;17 (+1) 9;47
   (+1)
336 8;29 7;49 7;22 8;52 (–1) 10;7 9;18 8;51
348 7;32 (+1) 6;46 6;6 7;28 (–1) 8;53 8;16 7;53

1. MS Ta 11;59o.

2. MS Ta 9;56.

3. 12;7 in MS Ta, in which 17’ appears in a marginal correction.

4. 14;15o in MS Ta; 14;11o in MS Tb.
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The result obtained will be table T3(am).

1.4  Calculate a table T4(am) of the equation of anomaly for minimum 
distance (gR-e), the arguments being the true anomalies obtained from 
T3(am), for each particular value of cm. The table has to be displaced 
7;37,28° and we must, therefore, calculate

7;37,28° – gR-e .
The expression used is:

7;37,28– (atan((6;17,46*sin(T3)) / (47;26,37 + 6;17,46*cos(T3)))),
in which T3 means T3(am).

1.5  Calculate a table T5(am) of the equation of anomaly for maximum 
distance (gR+e), also displaced 7;37,28°, again using as arguments the 
values of T3(am), for each particular value of cm:

7;37,28 – (atan((6;17,46*sin(T3)) / (72;33,22+6;17,46*cos(T3)))),
T3 being T3(am).

1.6  The final table for each value of the mean anomaly, and still for our 
particular value of cm, will be:

T4 + ((T5-T4)*T2),
in which 

T2 is T2(am),
T4 is T4(am),
T5 is T5(am).

2.  For 180° < av < 360°

2.1  As in 1.1 above: T1(cm).

2.2  Enter a table T2(cm) of the function of interpolation m2 for arguments 
0, 30, 60...360°. The values entered are those of table 10.8 above.

2.3  As in 1.3 above for am = 180, 186, 192...354°: 
T3(am), for each particular value of cm.

2.4  Calculate 7;37,28 – gR+e for the values of T3(am), using the same 
expression as above in 1.5: 

T4(am).

2.5  Calculate 7;37,28 – gR-e for the values of T3(am), using the same 
expression as above in 1.4: 

T5(am).

2.6  As in 1.6 above, calculate
T4 + ((T5–T4)*T2).
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A Survey of the Research before the 1980s

For the period 1834 to 1980 I have surveyed more than one hundred works 
exclusively or partially devoted to the mathematics and astronomy in the 
Muslim West. This number is modest considering the length of the period, the 
important historical role of these regions, and the number of works on the same 
subjects written in the same period in other parts of the Islamic world.1 One 
reason for this may be the political conditions of the societies of these regions 
at the end of the nineteenth and beginning of the twentieth century, and the 
consequent effects on their cultures.

Nevertheless, in spite of their modest number, and the different aims and 
levels of these works, they can be said to have contributed as a whole to writ-
ing the first drafts of the history of science in al-Andalus and the Maghrib in 
the Middle Ages.

Two kinds of works can be immediately identified, each having a spe-
cific goal. The first is founded on the traditional criteria for scholarly research, 
as developed in the nineteenth century, whose first concern is to make known 
the facts of the subject in a disinterested way. The second, a product mainly 
of the Maghrib and Egypt during the first half of the twentieth century, has a 
clearly stated nationalistic goal: to nurture a sense of pride in the heritage of the 
country and the importance of its contribution to science.2

Even this second kind, with its rhetorical form and political aim, has also 
contributed to a better knowledge of the scientific heritage of the Muslim West. 
For, in a field that is almost virgin territory, any data can be helpful, and, as 
long as the researcher can separate the wheat from the chaff, he or she can find 
in this nationalistic literature, if not secure factual information, at least some 
hints (sometimes quite important) that may reveal new documents or suggest 
new ways of approach.

For this reason it has seemed useful to make a rapid inventory of the 
significant publications in this field before 1980, in order to put recent research 
(including my own) in perspective. In addition, although focusing on the 
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mathematical aspects of the scientific tradition of the Muslim West, my presen-
tation will also include the essential elements relating to the astronomical tradi-
tion of this region, in both its theoretical and practical aspects. For astronomy 
uses, implicitly or explicitly, mathematical concepts, objects, and instruments 
belonging to various scientific traditions (Greek, Indian, Eastern Muslim), 
which fed the science of al-Andalus and the Maghrib. Moreover, some math-
ematicians in these regions, such as Maslama al-Majr•†• and Ibn al-Bannå, pub-
lished astronomical writings, and it would seem unfair to neglect this aspect of 
their scientific activities.

The Nineteenth Century

Although the Muslim West was mentioned in the earliest works in the his-
tory of mathematics or of astronomy, by J. F. Montucla,3 C. Bossut,4 and J. B. 
Delambre5 in France, M. Pelayo in Spain,6 and Hammer-Purgstall in Prussia,7 
the first substantial investigations concerning its scientific tradition were the 
work of J.-J.-E. and L.-A. Sédillot8 in astronomy and of F. Woepcke in math-
ematics.9 These works formed part of their authors’ interest in the Arabic sci-
entific heritage as a whole.10

Astronomy

In astronomy, the translation of the first volume of al-Marråkush•’s work 
(ca. 661/1262),11 Jåmi> al-mabådi< wa l-ghåyåt f• >ilm al-m•qåt [the Collec-
tion of Principles and Goals in the Science of the Determination of Time]12 
appeared in 1834 and was followed, ten years later, by an analysis of the 
whole treatise.13 These publications stimulated interest in the history of sci-
ences in the Maghrib, even though the contents of the work in question reflect 
the scientific tradition of the East before the thirteenth century, rather than that 
of Marrakech, the city where al-Marråkush• was born. However, one had to 
wait until the second half of the nineteenth century to see a new interest in the 
astronomy of the Muslim West, which concerns two great figures of medieval 
Spain: az-Zarqålluh (= az-Zarqiyål = az-Zarqål•) (d. 493/1100) of Toledo and 
the Castilian king Alphonso X (1252–1284), who perpetuated the Arab scien-
tific tradition of Spain by his knowledge and his patronage. Steinschneider’s14 
works on az-Zarqålluh and those of M. Rico y Sinobas15 on the Libros del Saber 
stimulated new research in the first half of the twentieth century, which was 
aided by the advance in the history of astronomy as a whole in the nineteenth 
century, together with the study of the history of mathematics.
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Mathematics

The publication of a translation of the Muqaddima [Introduction] of Ibn 
Khald¥n was the first stimulus for research into the history of Western Islamic 
mathematics by F. Woepcke, A. Marré, M. Steinschneider, and H. Suter.16 All 
the investigations by these authors of the Maghribi tradition in arithmetic and 
algebra, were more or less related to passages on the classification of the sci-
ences in the work of Ibn Khald¥n. Woepcke, for example, noticed the impor-
tance of the chapter in the Muqaddima on mathematics. He published extracts 
from it in 185417 and a complete translation two years later.18

Since these passages also influenced an important part of the research 
that will be mentioned below, I will also quote them and comment on their 
contents in the light of the research of these four historians. Because different 
interpretations of these passages have arisen out of the previous translations 
by Quatremère,19 de Slane,20 Woepcke, Rosenthal,21 and Monteil,22 I will give 
here my own translation, referring to a future study for the justification of my 
readings.23

After devoting section 19 of chapter VI of the Muqaddima to a general 
presentation of the rational sciences, Ibn Khald¥n discusses, in section 20, 
entitled Sciences of Number, the sciences of arithmetic, algebra, commercial 
transactions, and inheritances. Here are the main passages of the book, which 
is dated 779/1377:24

The Sciences of number: the first of them is arithmetic, and it is the knowl-
edge of the properties of numbers from the viewpoint of composition, either 
according to a successive “progression” or by duplication; as, for example, 
if the numbers follow one another while exceeding each other by the same 
number, then the sum of their two extremes is equal to the sum of any pair 
of numbers whose distance from the two extremes is the same, and it is 
equal to double of the middle [term] if these numbers are odd in number. For 
example: the sequence of the [integer] numbers, the sequence of the even 
numbers, the sequence of the odd numbers. . . .

This science is the first part of mathematics and the best established, and it 
is used in the proofs of calculation. The ancient and modern scientists have 
publications on it, and the majority of them integrate it into mathematics 
without devoting [specific] writings to it. This is what Ibn S•nå did in his 
books ash-Shifå<25 and an-Najåt,26 as well as others among the ancient scien-
tists. As far as the moderns are concerned, they gave it up because it is not 
practiced and because its usefulness is in the proofs and not in the calcula-
tions; and it is for this reason that they abandoned it after they had extracted 
the essence in arithmetical proofs, as Ibn al-Bannå did in the book Raf > al-
˙ijåb [The Raising of the Veil], as well as others. . . .
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And among the branches of the science of number, [there is] the art of calcu-
lation. It is a practical art [relating] to the calculation of numbers by joining 
and separation. Joining takes place in numbers in a single act [of adding], 
and this is [then] addition, and by repetition [of the same added portion], i.e., 
one increases a number [by its own value] as many [times as there are] units 
in another number; and this is multiplication. Separation also takes place for 
numbers, either in a single act, like cutting off of a number from [another] 
number and knowing of the remainder, and this is then subtraction; or cut-
ting of a number into a determined number of equal parts; and this is divi-
sion. . . . 

And among the best writings concerning the [subject] at this time in the 
Maghrib, there is al-Óaßßår’s small book. Ibn al-Bannå from Marrakech has 
on the [subject] a useful summary which establishes the rules of its opera-
tions. Then he commented on it in a book, which he entitled Raf > al-˙ijåb, 
which is obscure for a beginner because of the firmly-structured proofs it 
contains. It is a book of great value and we saw high-level professors giving 
much consideration to it; it is a book which indeed deserves that.

The author, God bless him, followed Ibn Mun>im’s book, Fiqh al-
˙isåb [The Science of Calculation] and al-A˙dab’s [book] al-Kåmil [The 
Complete <Book>]. He summarised their demonstrations and changed 
them—because of the use of [numerical] symbols—into clear and abstract 
justifications which are the secret and the essence of representation by 
[numerical] symbols.27 All these [matters] are obscure,28 but the obscurity 
arises [only] from the method of demonstration [which] is specific to the 
mathematical sciences, since their problems and their operations are them-
selves quite clear. However if one wanted to explain them, it would be 
necessary to give the justifications for these operations. And there are, in 
understanding them, difficulties which one does not find in the resolution of 
problems.29

In these extracts of the Muqaddima, European specialists in Arabic sci-
ences found a whole research program, namely the study of the mathematical 
works quoted by Ibn Khald¥n. With one or two exceptions, their publications 
were confined to the topics that were suggested to them by their own readings 
of the quoted passages.

An ambiguous passage in the section on calculation30 directed Woepcke 
toward his research of symbolism in the mathematical writings of the Muslim 
West. Thus he discovered some symbols in the work of al-Qalaßåd• (d. 892/
1486), an Andalusi mathematician who studied in the Maghrib and taught in 
Tlemcen and Tunis.31 In 1854, Woepcke presented a note on his discovery to 
the Academy of Sciences.32

In this note, Woepcke announced the discovery, in al-Qalaßåd•’s hand-
book “of a well developed algebraic notation among the Arabs of the West,” 
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as well as a “multiplication table of the algebraic powers” in a Persian manu-
script.

A few years later, Woepcke published al-Qalaßåd•’s book which con-
tained this symbolism and which is entitled Kashf al-asrår >an >ilm ˙ur¥f al-
ghubår [Disclosure of the Secrets of the Science of the Dust-Numerals].33 He 
also translated an anonymous Maghribi handbook on calculation34 as well as 
extracts from several commentaries on Talkh•ß a>mål al-˙isåb [Abridgement  
of the Operations of Calculation] of Ibn al-Bannå (d. 721/1321).35 In connec-
tion with al-Qalaßåd•, we must also mention a note by M. A. Cherbonneau on 
his writings and an article by G. Eneström on a method of approximation in 
his Kashf al-asrår.36

Although Ibn al-Bannå’s Talkh•ß was mentioned in the Muqaddima 
and in almost all other mathematical Maghribi texts studied between 1850 
and 1860, neither Woepcke nor any of the other researchers mentioned above 
devoted an article to the contents of this handbook itself. In 1864, Marré pub-
lished it with a somewhat literal and sometimes strange translation.37 This 
translation does not seem to have aroused much interest in Ibn al-Bannå and 
his work on the part of the researchers of this time, with the exception of Stein-
schneider who devoted a brief note to him in 1877.38

An erroneous reading of another passage of the Muqaddima was the 
origin of research on al-Óaßßår (5th/12th c.), one of the three other mathemati-
cians mentioned by Ibn Khald¥n. In this passage, one reads “Kitåb al-Óaßßår 
aß-ßagh•r” which one can translate as “the book of the small al-Óaßßår” or “the 
book of the small saddle” or “al-Óaßßår’s small book.” On the basis of this sen-
tence and its various interpretations, patient research was carried out by two 
of the most important historians of sciences in Europe at the end of nineteenth 
century: H. Suter and M. Steinschneider. In 1874, the latter provided a satis-
factory interpretation of the passage on the basis of Hebrew texts. At the same 
time, he revealed the existence of a Hebrew translation of the ‘small book’ of 
al-Óaßßår made by Moses Ibn Tibbon in 1271.39

In 1893, the discovery of an anonymous manuscript and its compari-
son with this Hebrew translation enabled him finally to give the true title of 
the book as Kitåb al-bayån wa t-tadhkår [Book of the Demonstration and the 
Recollection] and to provide new information on the complete name of its 
author.40

Suter investigated the biography of al-Óaßßår and the remainder of his 
mathematical production. He conjectured the existence of a second treatise by 
Óaßßår, of which the Bayån wa t-tadhkår was only an abridged version. After 
long and unsuccessful investigations to confirm this conjecture, he published a 
German translation of the Bayån.41
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Suter presented the results of his research on the other mathematicians 
mentioned by Ibn Khald¥n in his biobibliographic work which he completed 
at the turn of the century.42 This work can be regarded as the final result of half 
a century of research, edition and translation, in Europe and in Egypt, of the 
sources of Arab Science in a wide sense.

For the primary sources of the Muslim West, Suter initially used the first 
eight volumes of the famous Bibliotheca Arabica Hispana43 which were pub-
lished between 1883 and 1892, and al-Maqqar•’s Naf˙ a†-†•b [Diffusion of the 
Perfume].44 He also used the Eastern biobibliographic works from before the 
twelfth century which had been edited by European scholars there.45

It is natural to wonder whether, at the same time, one can detect in the 
nineteenth-century intellectual circles of the Maghrib, a similar interest for 
the history of the scientific heritage of the Muslim West in general. The most 
recent biobibliographic publications by Maghribi researchers, especially al-
Man¥n•, suggest a negative answer.46 However, there are two phenomena that 
deserve further study.

The first is the continuation of the traditional scholarly activities of pub-
lishing and teaching. In mathematics and astronomy, this included the continu-
ation of curricula in the institutions of higher education of Qarawiyy¥n in Fez 
and of Zayt¥na in Tunis, which had not changed since the sixteenth century, 
except in the reduction of their volume and the progressive lightening of their 
contents.47 The authors belonging to this traditionalist trend continued to write 
handbooks prompted by the earlier writings of the Maghribi tradition. In the 
field of historical research, there were numerous publications on the political, 
religious, and cultural history of the area of which none, to my knowledge, is 
devoted to aspects of the scientific history of the medieval period, or even of 
the Ottoman period (10th–13th/16th–19th c.). The only initiative concerning 
the scientific heritage was associated with the arrival, in 1865, of lithography 
(which was set up initially in Meknès, then definitively in Fez).48 The Recen-
sion of Euclid’s Elements by Naß•r ad-D•n a†-ˇ¥s• was lithographed,49 not with 
the aim of putting it at the disposal of researchers in the history of science, but 
rather to be used as a reference work for the teaching of elementary geometry 
at the Qarawiyy¥n in Fez.50 The scientific heritage continued to provide mate-
rial for teaching until the end of the nineteenth century.

The second phenomenon is the publication of translations, adaptations 
or popularizations of European writings about sciences (geometry, logarithms) 
or about military technology. This is related to initiatives taken in the Otto-
man empire in order to acquire scientific and technological knowledge from 
Europe.51 Among the translated works were Legendre’s Elements of Geometry 
and Lalande’s Treatise of Astronomy.52 For reasons that are still unclear, the 
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initiators of this trend do not seem to have been interested in researches on the 
history of the scientific heritage of the Muslim West. 

The Twentieth Century before 1980

In the twentieth century, research on the history of mathematics and astronomy 
in al-Andalus and in the Maghrib increased significantly but it continued along 
the same lines as the work of the pioneers of the second half of the nineteenth 
century which we mentioned above. In the biobibliography of Andalusi mathe-
maticians, the works of Suter, H. Hankel,53 and C. Brockelmann54 were supple-
mented by the publication of Kitåb ikhbår al->ulamå< bi-akhbår al-˙ukamå< 
[The Book which Informs the Scholars on the Life of the Wise] of Ibn al-Qif†• 
(d. 646/1248)55 in an abridged version, and by the important discovery of 
the Kitåb †abaqåt al-umam [Book of the Categories of Nations] of Íå>id al-
Andalus• (d. 461/1068). This small work (on profane sciences and philosophy) 
was written by a specialist in astronomy and it contains invaluable information 
on the contemporaries of the author and their works.56 On the basis of these 
new sources, J. A. Sánchez-Pérez compiled, in, 1921, a biobibliography on the 
history of mathematics and astronomy in al-Andalus.57

This work contains data on 191 mathematicians and astronomers, but 
in contrast to astronomical and astrological writings, Sánchez-Pérez could 
name very few extant copies of mathematical works produced in al-Anda-
lus between the ninth and the fifteenth centuries, these being the Commentary 
of Ibn Zakariyyå< al-Gharnå†• (d. 809/1406) on Ibn al-Bannå’s Talkh•ß, Ibn 
Badr’s Abridged Book in Algebra (7th/13th) and two writings of Ibn Mu>ådh 
al-Jayyån• (d. 460/1067): his Commentary on Book V of Euclid’s Elements 
and his treatise of spherical Trigonometry, Kitåb majh¥låt qisiyy al-kura [The 
Book of the Unknown Arcs of the Sphere].58 At the same time, Sánchez-Pérez 
gave a long list of the lost mathematical works by the scientists who worked 
in al-Andalus between the ninth and fifteenth centuries. This difference is 
even more striking because, except for Ibn Mu>ådh’s book on trigonometry, 
the mathematical works identified by the time of Sánchez-Pérez are minor 
writings, compared with the works of the tenth to twelfth centuries. Thanks 
to information provided by Íå>id al-Andalus• and by mathematicians of the 
thirteenth to fourteenth centuries, such as Ibn Mun>im, Ibn al-Bannå, and Ibn 
Zakariyyå< al-Gharnå†•, we know that dozens of mathematicians of the tenth to 
twelfth centuries, including Ibn as-Sam˙, az-Zahråw•, and al-Mu<taman, had 
published works of a high level on geometry, calculation and the theory of 
numbers. Ibn Khald¥n also said, in his Muqaddima, with reference to the Book 
of Algebra by the Egyptian Ab¥ Kamil (d. 930), that it “was commented on by 
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many Andalusis” and that they “excelled” in their commentaries, whereas only 
the rather average work by Ibn Badr has reached us.60 

No work similar to that of Sánchez-Pérez was written in this time, on 
the scientific tradition of the Maghrib. Two contributions were made by H. 
P.-J. Renaud (1881–1945) in the years 1932–1933: an appendix to Suter’s 
book61 and an article on the edition of scientific works in the Maghrib prior to 
1880.62

The Contents of Research

Astronomy and Astrology

For these two important fields of science in al-Andalus,63 the most important 
research undertaken in the first half of the 20th century was that by Millas 
Vallicrosa, in particular on az-Zarqålluh’s works.64 This was followed by con-
tributions by J. Vernet, G. J. Toomer, W. Hartner, B. Goldstein, J. Samsó, 
D. A. King, R. Lorch, and others65 on certain aspects of the astronomical pro-
duction of az-Zarqålluh, and on other astronomers, such al-Majr•†• and al-
Bi†r¥j• (d. 581/1185).

The research in the first half of the twentieth century showed that Anda-
lusi scientists designed new astronomical instruments, both instruments of 
observation66 and universal astrolabes.67 It also appeared that attempts were 
made by Ibn Båjja (d. 533/1138), Ibn ˇufayl (d. 581/1185), Ibn Rushd (d. 595/ 
1198) and al-Bi†r¥j•, to establish a new cosmology. On the basis of the criti-
cism of the Ptolemaic model by Ibn al-Haytham,68 these scientists tried to 
replace the Ptolemaic model by a model that was, in their opinion, more com-
patible with the physical world.69 The originality of the Andalusi mathemati-
cians was also revealed through their development of astronomical tables, such 
as the tables of Ibn Mu>ådh and the Toledan tables.70

The research between 1900 and 1980 also produced four essential in-
sights. First, it showed that a number of scientific works by Greek, Indian or 
ninth-century Arabic authors, such as al-Khwårizm•, Óabash al-Óåsib, and al-
Battån•, were available in al-Andalus at an early stage.71 Second, it revealed 
that a Latin astrological tradition influenced the birth and the development of 
astrology in al-Andalus, which had been previously thought to depend only on 
the traditions of the Eastern Islamic world.72 There are also connections with 
the local tradition of sundials prior to the advent of Islam in Spain.73 Third, it 
showed the important role of the group of scientists associated with Alphonso 
X in the transmission of science from Arabic into Latin.74 This transmission 
was studied with specific examples, such as the universal astrolabe.75 Fourth, 
it demonstrated the important role of mathematical methods, which are often 
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implicitly present in works on the theoretical aspects of astronomy, astronomi-
cal instruments and sundials.

Mathematical methods must also have been used for the computation of 
the extant astronomical tables. Mathematical methods are discussed explicitly 
in Ibn Mu>ådh al-Jayyån•’s trigonometrical treatise Kitåb majh¥låt qisiyy al-
kura. This book is a description of trigonometrical procedures for the solution 
of astronomical problems.76 His approach is independent of that of his imme-
diate predecessor in Asia, al-B•r¥n•, in his Maqål•d >ilm al-hay<a [The Keys of 
Astronomy].77 Ibn Mu>ådh develops a procedure for determining all the ele-
ments (sides and angles) of an unspecified spherical triangle from three given 
elements. He uses the polar triangle for the resolution of the case where three 
angles are given, in a way independent of Ab¥ Naßr ibn >lråq (4th/l0th c.) in the 
Eastern Islamic world. He is, finally, the first known Andalusi mathematician 
to have calculated a table of tangents.

In the historical research of the first half of the twentieth century, the 
place of the astronomical tradition of the Maghrib is quite modest by com-
parison with that of the astronomy in al-Andalus. This astronomical tradition 
could not compete with that of al-Andalus, but nevertheless deserves some 
attention.

The first work in this tradition to be studied was Ibn al-Bannå’s Minhåj 
a†-†ålib f• ta>d•l al-kawåkib [The guide of the student for the correction of the 
star movements], of which a partial Spanish translation was published by J. 
Vernet,78 who also listed, four years later, the astronomical manuscripts of Ibn 
al-Bannå.79 In the 1930s, H. P.-J. Renaud started to work on particular astro-
nomical subjects. He published biographical notes on two astronomers, Ibn al-
Bannå80 and Ab¥ Miqra>,81 then he conducted research on the astronomical and 
astrological traditions in the Western Maghrib as a whole,82 on the obliquity 
of the ecliptic83 and the appearance of the lunar crescent.84 He published the 
only known calendric treatise of the Maghribi tradition, whose contents also 
show the close connection between the tradition in the Maghrib and that of al-
Andalus.85

An interest for the study of the scientific heritage of the Muslim West 
started relatively early in certain intellectual spheres in the Maghrib. From the 
1950s on as we will see in detail in the following chapter devoted to mathe-
matics, the results of this interest were modest in quantity and uneven in qual-
ity. The history of astronomy does not seem to have benefited from the passion 
for the Arabic sciences of the Middle Ages which was aroused by the phenom-
enon of Nah∂a [rebirth] preached by the Muslim reformers of the beginning of 
the century, such as Shaykh >Abduh and Jamål ad-D•n al-Afghån•.86 I have not 
found any trace of original historical work devoted to a particular astronomer 
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of al-Andalus or the Maghrib, other than notes in manuscript catalogues and 
in general works on the cultural and scientific history of the former Islamic 
empire. However, some of these general works contain important, and some-
times new, information on particular astronomers of the Muslim West or 
on their contribution. Examples are Gann¥n’s book, which is limited to the 
cultural history of the Western Maghrib; ˇ¥qån’s book, which is devoted to 
the entire history of Arabic astronomy and mathematics; and the book of al-
>Azzåw• dealing with the history of astronomy in the Islamic world, from the 
arrival of the Mongols until the second decade of the twentieth century.89 
These books contributed in a double way to a better knowledge of the history 
of Islamic science in general. The works by Gann¥n and ˇ¥qån were widely 
distributed and went through several editions.90 They changed the attitude 
among the intellectuals of the Arabic countries, and in the Islamic world as 
a whole, toward the cultural and scientific heritage of the civilization of their 
ancestors.91 In addition, the new information in these works was of interest to 
the biobibliographers and the Western specialists in the history of science, who 
integrated it into their own publications. For example, Sarton said that the book 
of ˇ¥qån was indispensable for researchers in the history of Arabic astronomy 
and mathematics. He also published a positive review of this work.92 In 1942, 
C. Brockelmann wrote to A. Gann¥n in connection with his book: 

I received your invaluable book entitled ‘the Moroccan genius in the Arabic 
literature’; you have honoured me by sending it. I began to read it and I ben-
efited much from it in connection with what has escaped my research up to 
now on the history of the Moroccan literature. I hope to use its invaluable 
contents for my profit and the profit of my Orientalist colleagues, in the 
Supplement to my first book on the history of Arabic literature which is now 
published in the city of Leiden.93 

Finally, thanks to the research of Íåli˙ Zak•, Western specialists have 
been informed about the existence of the mathematician Ibn Óamza (16th cen-
tury), and his book Tu˙fat al-a>dåd [The Ornament of Numbers], in which Zak• 
claims to have found some form of the concept of the logarithm.94

Mathematics

In the early twentieth century, research on the history of mathematics in al-
Andalus and the Maghrib was limited to six authors and some specific topics, 
with an emphasis on biobibliographic research and editions of texts.

Three of these authors are Maghribi, namely al-B¥n• (d. 622/1225), Ibn 
al-Bannå (d. 721/1321) and Ibn al-Yåsam•n (d. 601/1204). The fourth author, 
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al-Qalaßåd•, is Andalusi but spent most of his life in the Maghrib. The origin 
of the two remaining mathematicians, al-Óaßßår and Ibn Badr (7th/13th c.) is 
uncertain. Judging from the contents of their mathematical writings and from 
their names (which are carried by a number of Andalusi intellectuals men-
tioned in the biobibliographic works), one may guess that they were of Anda-
lusi origin.

This historical research concentrated mainly on the science of calcula-
tion, algebra, and, to a lesser extent, elementary geometry with plane figures. 
I will also mention astrology and the science of inheritances as applications of 
mathematics, even though the research in these two subjects was more modest 
in quantity.

Ibn al-Bannå and his work were the subject of the greatest number of 
studies. Renaud published two articles on him, first a very concise article, 
giving precise details on his date of birth,95 and secondly, a much longer one, 
in which he reveals that Ibn al-Bannå was the author of many works in differ-
ent fields.96 In his articles Renaud corrects certain errors according to which 
Ibn al-Bannå’s origin was Saragossa or Granada, and which were based on 
confusing97 or unbased assertions, for which Casiri, the author of the catalog 
of Arabic manuscripts of the Escurial, seems to have been responsible.98 Later, 
A. Gann¥n99 and A. al-Fås•100 published biobibliographies of Ibn al-Bannå, but 
these did not bring in any new elements beyond what Renaud’s researches had 
already revealed.

Only one of the mathematical writings of Ibn al-Bannå was the subject of 
a detailed study, namely the Talkh•ß, a handbook on the science of calculation. 
This work was first translated (but not edited) by Marré, then edited, translated 
a second time into French, and analyzed by Mohamed Souissi.101 In this work, 
Souissi used other Maghribi mathematical writings, such as Ibn al-Bannå’s al-
Maqålåt al-arba> [The Four Epistles]102 and the commentaries on the Talkh•ß 
by Ibn al-Bannå’s student al-Huwår• (7th/13th centuries), and al-Qalaßåd•.103 
This comparative study of the sources themselves confirmed the existence of a 
certain continuity in the subjects and methods used in the mathematical teach-
ing in the Maghrib in the fourteenth and fifteenth centuries.104

We know today that these same topics and methods already occurred in 
al-Óaßßår’s handbook al-Bayån wa t-tadhkår, of which Suter had published 
a detailed analysis in 1901. A comparison between this handbook and the 
Talkh•ß in Marré’s translation could have revealed the relationships between 
the mathematical traditions of twelfth and the fourteenth centuries. As far as 
I know, no new research was done on this subject during the period which 
interests us here.
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A new opportunity for the realization of this comparative study arose 
in 1964 when A. Gann¥n revealed the existence of a twelfth-century treatise, 
written by Ibn al-Yåsam•n, with a rich mathematical content which is impor-
tant for a better knowledge of the mathematical tradition of the Muslim West as 
a whole.105 But the article, which was written in Arabic, apparently went unno-
ticed. Twenty years later, Ibn al-Yåsam•n continued to be known only for his 
algebraic poem, al-urj¥za al-yåsam•niyya [the Poem of al-Yåsam•n].106 This 
urj¥za did not get a better fate, even though a certain number of manuscript 
copies had been mentioned by Suter and Brockelmann. But in 1916, an impor-
tant algebraic work, Ibn Badr’s Mukhtaßar f• l-jabr, was edited and translated 
into Spanish by Sánchez-Pérez. As we will see in the next section, this text 
throws light on the connections between the algebraic tradition of the Muslim 
West and the algebra of al-Khwårizm• and Ab¥ Kåmil (d. 318/930).107

In geometry, the only contribution was the publication of a facsimile 
with English translation of Ibn Mu>ådh al-Jayyån•’s treatise on the theory of 
proportions of Euclid’s Elements Book V.108 This text is important both for 
the history of this theory in the Islamic world and for the history of transmis-
sion between the Eastern and the Western Islamic world. But its publication 
did not inaugurate new research in the mathematical tradition of the Maghrib 
and al-Andalus.

Publications on applications of mathematics are also rare and limited 
to the presentation of the contents of a manuscript. Two texts in the science 
of inheritances drew the attention of Sánchez-Pérez, probably more for their 
sociological interest than for the mathematical content.109 The construction of 
magic squares was studied through al-B¥n•’s writings,110 but the work of al-
B¥n•, who lived in Egypt, is representative of the Eastern Islamic tradition.

The Contents of the Published Mathematical Texts

The research between 1900 and 1980 shows a predominant interest among 
historians in the mathematical works themselves, through editions, transla-
tions and analyses of texts. This has made it possible to make a preliminary 
overview of the mathematics that was taught or used in the Maghrib from the 
twelfth century onwards, although nothing precise had yet been revealed on the 
teaching of geometry. Thanks to the handbooks analyzed by Suter, Woepcke 
and Souissi, we know that the following subjects in arithmetic were taught in 
the Maghrib, between the twelfth and fourteenth centuries:

•  the positional decimal system and its representation by the ghubår symbols.111

•  the seven traditional arithmetical operations, i.e., duplication, halving, addition, 
subtraction, multiplication, division, and extraction of the exact or approximate 
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square root of a number, with various algorithms for integers and with extensions 
of some of these operations to fractions and to quadratic or biquadratic irrationals.

•  Arithmetic formulas for the summation of finite series of natural, odd, or even 
numbers, squares, cubes, as well as the finite geometrical series.

•  Operations specific to fractions, such as reduction and conversion.

The second part of these handbooks of arithmetics is devoted to solu-
tions of equations by arithmetical methods, that is, the rule of three and the 
method of false position (in the Muslim West called >amal al-kaffåt [method of 
scales]), then by the six canonical equations of al-Khwårizm•.112

In addition, irrational numbers are found in a poem by Ibn al-Yåsam•n, 
entitled Urj¥za f• l-judh¥r [Poem on the Roots],113 and in al-Qalaßåd•’s letter 
entitled Risåla f• dhawåt al-asmå< wa l-munfaßilåt [Epistle on the Binomials 
and the Apotomes].114 One finds here the tradition of Euclid’s Elements Book 
X, rephrased arithmetically, as well as some extensions of this tradition discov-
ered in the Eastern Islamic word between the ninth and the eleventh century.

The historical studies that were published during this period on the 
numeral systems used in the Muslim West all deal with the question of origin, 
usually in respect to the positional decimal system. Probably for cultural rea-
sons, this subject inspired a series of articles on the origin of the symbols 
which were used for this system in the Maghrib.115 These articles contributed 
nothing new to the history of mathematics, because they were written from 
cultural and ideological motivations by scholars who had no expertise in the 
scientific aspects of the subject.

At the beginning of this century, one also observes a revival of a non-
positional numeral system which had been used for centuries, in some admin-
istrations of the Western Maghrib. These were the so-called numbers of 
Fez using 27 different signs. The system was also known in Maghrib under 
the name of ˙ur¥f az-zimåm [figures of the account book]. The calculation 
which was associated with it was called ˙isåb r¥m• [Byzantine calculation]. 
A number of old texts, dealing with this system and its applications, by al-
>Uqayl•, al-Fås•, and Sakr•j,116 appeared in a lithographed edition. These publi-
cations might explain the interest around the 1920s for this numeral system on 
the part of researchers of different backgrounds, such as G. S. Colin, C. Pellat, 
and J. A. Sánchez-Pérez.117 This explanation needs to be supported by further 
research in the cultural history of the Maghrib in the first half of twentieth cen-
tury. It would also be interesting to know if this revival represents a return to 
the scientific heritage similar to, but on a lower level than, the development in 
China in the end of eighteenth and throughout the nineteenth centuries.118

The chapters on algebra in the arithmetical handbooks and the small 
poem of Ibn al-Yåsam•n which I have mentioned, are limited to the definition 
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of algebra, its objects, and its methods: the unknowns, the numbers, the four 
arithmetical operations applied to these objects when they stand alone or are 
combined in polynomial expressions, the six canonical equations, the opera-
tions of balancing and, finally, the method of solution.

In the Muqaddima, Ibn Khald¥n says on algebra:

the first one who wrote on this science is Ab¥ >Abdallåh al-Khwårizm• and, 
after him, Ab¥ Kåmil Shujå> ibn Aslam; then people followed his method. 
His book on the six equations is among the best-written on the [subject]. 
Many [are those], among the people of al-Andalus, [who] commented on it 
well. And among the best commentaries is al-Qurash•’s book. And we heard 
that one of the greatest masters in mathematics among the people of the East, 
was led to [a greater number] of equations than these six species, bringing 
them to more than twenty, and that he determined valid procedures for their 
resolution, followed by geometrical demonstrations.119

This passage has been translated and analyzed many times by histo-
rians of sciences since Woepcke. The passage showed that, in the Muslim 
West, algebra did not remain in the condition in which al-Khwårizm• had left 
it, and as we find it in the Maghribi handbooks of the fourteenth to fifteenth 
centuries analyzed by Woepcke, Suter, and Marré. But Ibn Khald¥n’s asser-
tions were partially confirmed by the publication of Ibn Badr’s Mukhtaßar f• 
l-jabr [Concise Work on Algebra].120 This work contains all the material of al-
Khwårizm•’s book but in a different presentation and with extensions and new 
applications. Ibn Badr treats the same topics as those studied in the Islamic 
East before al-Karaj•. He goes beyond al-Khwårizm• because he generalizes 
the rule of the powers, discusses the necessary terminology, and introduces 
irrational numbers. He also solves the same types of problems which one 
encounters in Ab¥ Kåmil’s work: problem of “tens,” “capitals,” “meetings,” 
“cereals,” the “pursuit” problem, etc. But the number of examples solved in 
each category is less and Ibn Badr generally selected the problems which do 
not involve too many technical complications.121 Fifty years later, an English 
translation of Ab¥ Kåmil’s treatise on algebra was published on the basis of the 
Hebrew version of Mordechaï Finzi.122 Ab¥ Kåmil’s work is important for the 
transmission of algebra from the East to the West, but its publication did not 
lead to a re-examination of the algebraic texts from the Muslim West.

In number theory, Ibn Khald¥n was not of great help for historians of sci-
ence since he said merely that the mathematicians 

had given it up after they had drawn the main points for arithmetic demon-
strations, as Ibn al-Bannå did in the book Raf > al-˙ijåb, as well as others.123 
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The last sentence revealed the title of a work whose contents were prom-
ising, but this became available only in the 1980s. The last word of this sen-
tence kept its secrets even after the publication of Íå>id al-Andalus•’s Kitåb 
†abaqåt al-umam. These “other” mathematicians who wrote on number theory 
seem to have been Andalusis. Íå>id al-Andalus•, who designates them by 
“scientists in the theory of numbers”124 seems to differentiate them from the 
“scientists in calculation.” Knowledge of the titles of their works could have 
made it possible to solve the question of their origin but Íå>id seldom mentions 
the works of the scientists he introduces. Among the titles he quotes, only one 
could be connected to an Andalusian tradition in arithmetic, namely the Kitåb 
†ab•>at al->adad [Book on the Nature of the Number],125 but up to now, we do 
not know its contents.

Ibn Khald¥n seems to refer to an arithmetical tradition in the Maghrib 
in his discussion of certain types of integers and of the figurate numbers of the 
Arithmetica of Nicomachus of Gerasa.126 The existence of such a tradition was 
confirmed in 1976 by the publication of an anonymous text, attributed to Ibn 
al-Bannå and dealing with the determination of amicable numbers.127

Orientations and Results of Research after 1980

Before 1980, research on the mathematical tradition of al-Andalus and the 
Maghrib focused on arithmetic and algebra, and was based on the known writ-
ings of three authors: al-Óaßßår, Ibn al-Bannå, and al-Qalaßåd• (12th, l3th–
14th, 15th century respectively).

In spite of the major contributions of the first researchers in this field, 
not all questions raised by the publication of Ibn Khald¥n’s Muqaddima had 
been answered, and some interpretations concerning the mathematicians or the 
mathematical tradition of the Muslim West were unsatisfactory. In addition, 
the modest place of mathematics in published sources suggested that profitable 
research was still possible. Several questions were still open. 

The first question was the beginning of mathematical activity in the 
Muslim West. The second concerned the circulation of scientists, ideas, and 
techniques between al-Andalus and the Maghrib, in relation to the cultural and 
political history of the area.

A third question related to the contents of the various handbooks for 
teaching which had already been published and analyzed. Obviously these 
contents did not reflect the level of mathematics in the Eastern Islamic world, 
and they were well below the level of some handbooks published in Baghdad a 
few centuries earlier. The historians tried to find an explanation for this estab-
lished fact, or to qualify it by discovering new sources.
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In addition to these general questions, there were also more specific ones. 
The first concerned the mathematical symbolism which Woepcke found in the 
work of al-Qalaßåd•. What were the origins of this symbolism, its develop-
ment, and, especially, its role in teaching? The second was whether other intel-
lectual activities in Western Islamic cities could have influenced the thought of 
the mathematicians in relation to some mathematical concepts or definitions.

In addition, the biobibliographic or historical works suggested two 
equally important topics: the history of the infrastructure of teaching, and the 
place of the community of mathematicians and their activities in the context of 
the intellectual life and the cultural and religious practices of the cities of al-
Andalus and the Maghrib.

The Mathematical Topics That Were Studied

Combinatorics

Research on this subject began with the discovery in 1978 of Ibn al-Bannå’s 
treatise entitled Tanb•h al-albåb >alå maså<il al-˙isåb [Warning to Intelligent 
People on the Problems of Calculation].128 The analysis of this treatise showed 
the interests of the author in combinatorics as well as his contributions to this 
field. This contribution seemed to be based on earlier work by another mathe-
matician, Ibn Mun>im, whose book Fiqh al-˙isåb [the Science of Calculation] 
had been mentioned by Ibn Khald¥n in his Muqaddima.

Further progress was made by the analysis of another previously unpub-
lished work of Ibn al-Bannå, Raf > al-˙ijåb. The chapter on figurate numbers 
and the summations of finite sequences of integers, as well as some informa-
tion drawn from late commentaries on Ibn al-Bannå’s Talkh•ß, made it pos-
sible to supplement the combinatorial part of Tanb•h al-albåb and to place 
these parts in a context of interests and practices which seem specific to the 
Maghrib.129

The subsequent discovery of Ibn Mun>im’s Fiqh al-˙isåb and the study 
of its important chapter 11 showed that the Maghribi contributions in combi-
natorics, prior to those of Ibn al-Bannå, were important both in quantity and in 
quality. Not less than nineteen pages of this work are exclusively devoted to 
combinatorial definitions, theorems, and techniques.130

The Fiqh al-˙isåb showed the utility for a historian of science of a suf-
ficient knowledge of the political, cultural, and ideological environment where 
the mathematical activities took place. Thus it was possible to refute several 
assumptions about Ibn Mun>im’s life and activities which had prevailed since 
the 1940s and which had been a source of debate between European historians 
of sciences such as Steinschneider, Suter, Woepcke, and Renaud.
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The technical contents of the combinatorial practice in the two above-
mentioned sources can be summarized as follows. The combinatorial activities 
of the medieval Arabic tradition are not a direct continuation of the Greek and 
Indian traditions, but their origin is closely related to an Arabic cultural real-
ity.131 For they originated not from the traditional mathematical themes, but in 
linguistics and thus with the first studies on the Arabic language and the lexical 
morphological terminological discussion which they prompted.

At a later stage, one observes inside the mathematical tradition of the 
Islamic East the first signs of what one could call a combinatorial approach, 
in connection with simple enumerations in the solution of geometrical or alge-
braic problems, which did not require the establishment of formulas or general 
processes. But, paradoxically, the mathematicians of the Maghrib who dealt 
with combinatorics, were not inspired by this later tradition.

Ibn Mun>im tells us that his project is to mathematize a lexicographical 
problem inherited from the period of al-Khal•l Ibn A˙mad (d. 797). He initially 
established a rule enabling him to determine all the possible combinations of 
n colors in groups of p. For that, he has to construct the arithmetical triangle 
according to both an inductive and a combinatorial approach. Then he demon-
strates, according to the same double approach, the formulas for the permuta-
tions of a set of letters, with or without repetitions, and the formulas giving, 
by recurrence, the number of possible readings of the same word of n written 
letters, taking into account all the unwritten signs used in a given language 
(e.g., vowels and suk¥ns for Arabic). He also gives a formula for arrangements 
without repetitions of n letters in groups of p, taking account of the unwritten 
signs (vowels, etc.) that can accompany these letters, and he solves a certain 
number of problems on the maximum number of combinations with repeti-
tions. These results enable the author, by means of a series of tables, to solve 
the initial problem of the enumeration of all the words from one to ten letters 
which can be formed with the letters of an alphabet, taking into account all the 
possible repetitions of the letters in a word and the (unwritten) signs which can 
be placed on these letters.

The results in Ibn Mun>im’s work were new, and he also derived them by 
a new method, which involved a purely combinatorial reasoning. In the history 
of combinatorics, the Fiqh al-˙isåb is, at the same time, the end of a stage of 
calculation by means of tables, and the beginning of a new stage, the substitu-
tion of arithmetic formulas for these tables. These formulas are subsequently 
used to solve mathematical problems in various fields.

The contributions of Ibn al-Bannå develop the scope of Ibn Mun>im. In 
the Tanb•h al-albåb, Ibn al-Bannå establishes the famous arithmetical formula 
permitting a direct computation of the number of combinations of n objects in 
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groups p without having to construct the arithmetical triangle, as his predeces-
sor had done.

In his Raf > al-˙ijåb, one finds combinatorial theorems similar to those 
in the Tanb•h al-albåb, but presented as complements to two chapters on the 
theory of numbers inherited from the arithmetical tradition of Nicomachus: on 
the summations of integers and on the figurate numbers respectively.

In later Maghribi mathematical writings, combinatorial approaches ap-
pear in very different fields, such as magic squares, inheritances, grammar, and 
even religion.132

The fact that all later authors use the same combinatorial terminology, 
and that none of them claim authorship for results or applications, reinforce the 
continuity of the combinatorial tradition since Ibn Mun>im.133

Algebra

The first research in the history of Maghribi algebra after 1980 was related to 
the diffusion in the Muslim West of the six canonical equations of degree one 
or two. The available texts were Ibn al-Yåsam•n’s Urj¥za, Ibn Badr’s Ikhtißår 
f• l-jabr, both already published, and the still unpublished Kitåb al-uß¥l of Ibn 
al-Bannå. To these texts, which are exclusively devoted to algebra, one can add 
the algebraic chapters which usually conclude the handbooks of calculation.

This research showed that the canonical equations were generalized and 
that changes were made in the classification of these equations, in close con-
nection with some developments of the algebra of polynomials.134 We have 
already mentioned specific developments of notational symbolism of the 
Muslim West discovered by Woepcke and Renaud.135 Traces of this sym-
bolism were found in Ibn al-Yåsam•n’s Talq•˙ al-afkår [The Fecondation of 
Spirits],136 and through specific testimonies, it has been possible to follow the 
evolution of these symbols and abbreviations into an instrument for solving 
arithmetical and algebraic problems.137

Based on these specific studies on equations and notational symbolism, 
I wrote a general assessment of the research on the available algebraic sources 
from the Muslim West.138 A few years later, Saidan published a critical edi-
tion and analysis of the only work on algebra from the Maghrib which has 
reached us, namely Ibn al-Bannå’s Kitåb al-uß¥l wa l-muqaddamåt f• l-jabr 
wa l-muqåbala [the Book of the Bases and of the Preliminaries in Restoration 
and Balancing].139 This is a work in the algebraic tradition of Ab¥ Kåmil, and it 
gives an idea of the level of teaching of algebra in some cities in the Maghrib, 
such as Bougie, Marrakesh, and Fez.
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Since the publication of Ibn Khald¥n’s Muqaddima, we know that 
there was an algebraic tradition in this area.140 This information was par-
tially confirmed by Ibn al-Yåsam•n’s Urj¥za, Ibn Badr’s Ikhtißår, and finally, 
by some surviving citations of the lost work of the Andalusi mathematician, 
Abu’l-Qåsim al-Qurash•, who taught algebra and the science of inheritance in 
Bougie, in the twelfth century. Two distinct aspects of this tradition appear in 
two other categories of writings translated from Arabic or strongly related to 
the Arabic algebraic tradition of al-Andalus. The first category consists of the 
chapters of the Liber Mahameleth on Algebra141 and some parts of Ab¥ Bakr’s 
Liber Mensurationum, and it contains solutions of practical problems using the 
method of the algebra of al-Khwårizm•.142

The second category consists of texts on the solution of problems of 
(land) measurement, including Abrahåm Bår Óiyya’s Liber Embadorum,143 
parts of Ab¥ Bakr’s Liber Mensurationum and the Risåla f• at-taks•r [Book on 
Measurement] of Ibn >Abd¥n (d. after 976).144 These texts show the existence 
in al-Andalus of a problem-solving tradition with algebraic aspects anterior to 
al-Khwårizm•, and related to the Babylonian tradition.

The analysis of the available sources shows that the mathematical tra-
dition of the Maghrib was not a faithful preserver of various aspects of the 
algebraic activity in al-Andalus. In the Maghrib, one finds neither direct or 
indirect references to three important traditions: algebra associated with the 
geometry of measurement such as it appears in Ibn >Abd¥n’s handbook, study 
of the polynomials on the basis of the work done by Sinån Ibn al-Fat˙ in the 
East145 and, finally, the geometrical solution of cubic equations of al-Khayyåm 
(d. 526/1131).146

The first tradition existed in al-Andalus and its absence in the Maghribi 
writings can be explained either by the loss of the sources or by the lack of 
interest on the part of Andalusi mathematicians from the twelfth century 
onwards. Future research may reveal which of these alternatives is correct. 
The second tradition is partially present in the Maghribi texts, but the alge-
braic writings of Eastern authors, like Ibn al-Fat˙, al-Karaj• (d. 414/1023) and 
al-Samaw<al (d. 571/1175) seem to have been unavailable in the West. The 
silence of the mathematical sources and Ibn Khald¥n’s testimony suggest that 
the third tradition did not take root in al-Andalus and the Maghrib.147

The contents of Western algebraic writings prior to the thirteenth cen-
tury can be summarized as follows. The oldest witness in al-Andalus of the 
“algebraic” tradition in measurement problems seems to be Ibn >Abd¥n’s 
handbook. Many problems are set out and solved according to the procedures 
in Babylonian texts, without any reference to the six canonical equations of 
al-Khwårizm•’s Algebra and without the algebraic terminology of the ninth 
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century. Textual similarities to problems in the Liber Mensurationum and the 
Liber Embadorum suggest that this tradition of measuring survived in Andalus 
until the beginning of the twelfth century.

In the tradition of al-Khwårizm• and Ab¥ Kåmil, Ab¥ Bakr’s Liber Men-
surationum contains problems of measurement that are similar and sometimes 
identical to those treated by Ibn >Abd¥n and Bår Óiyya.148 The author of the 
Liber Mahamalet refers explicitly to Ab¥ Kåmil’s Algebra, the Kitåb al-kåmil, 
but no other work is quoted.

Three texts were influenced by the tradition after Ab¥ Kåmil. The mathe-
matical poem of Ibn al-Yåsam•n summarizes the algorithms for the solution 
of the six canonical equations and accompanies them with some operations 
on quadratic irrationals. Ibn Badr’s Ikhtißår al-jabr wa l-muqåbala [the Sum-
mary of Restoration and Balancing] is a summary of algebra in the tradition of 
al-Khwårizm• and Ab¥ Kåmil, with some further additions. However, an 
analysis of the methods and the problems treated by Ibn Badr reveals some 
characteristics that are difficult to relate to what is known about the alge-
braic traditions of the East prior to al-Khayyåm. Ibn al-Bannå’s Kitåb al-uß¥l 
[Book of Elements] is the last important work on Algebra of the Muslim West, 
and later algebraic works, in the Maghrib and in Egypt, derive their inspira-
tion entirely from the problems and the methods of this book, or reproduce 
them with explicit references.149 The Book of Elements is in two parts. The 
first part deals with numbers; it is a summary of Books VII–X of Euclid’s Ele-
ments with additions such as the division by irrational expressions of the form 
n + m + p. The second part is about the solution of various types of problems 
using algebraic methods. First Ibn al-Bannå treats problems whose solutions 
are integers or fractions, and he concludes with problems whose solutions are 
irrational numbers. This part of the book is inspired by Ab¥ Kåmil’s problems, 
and sometimes use exactly the same coefficients, but follow a different form of 
presentation.150 The additions by Ibn al-Bannå are problems of algebra which 
do not occur in Ab¥ Kåmil’s book but which fit into the same tradition, and 
problems on the theory of numbers, such as the representation of an integer as 
to the sum of two squares of integers or rational numbers.

Ibn al-Bannå also dealt with algebra in two other works, the Talkh•ß 
and the Raf > al-˙ijåb. Although the Talkh•ß contains only the rules and the 
basic algorithms of algebra, without demonstration and application, it was 
the Arabic mathematical work that received the most commentaries in the 
Maghrib, between the fourteenth and the sixteenth century. The Raf > al-˙ijåb 
contains some new elements, in particular purely algebraic methods for set-
ting out and calculating the solutions of quadratic equations, without reference 
to the geometrical demonstrations found in the Algebra of al-Khwårizm• and 
Ab¥ Kåmil.
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After Ibn al-Bannå’s Kitåb al-uß¥l, three kinds of algebraic texts were 
written in the Maghrib: commentaries on earlier works, independent obser-
vations, and chapters in arithmetical works. Their contents are not always a 
simple repetition of the methods in the earlier works.

All the algebraic commentaries which have reached us concern Ibn al-
Yåsam•n’s algebraic poem. Some were written in the Maghrib.151 The analysis 
of these texts does not disclose anything new, other than that algebraic symbol-
ism was intensively used in the mathematical teaching in the Maghrib during 
the fourteenth to fifteenth centuries.

The algebraic chapters of two other texts are important for showing the 
use of this symbolism. The first is Ibn Qunfudh al-Qasan†•n•’s Óa†† an-niqåb 
>an wuj¥h a>mål al-˙isåb [the Lowering of the Veil on the Various Opera-
tions of Calculation] which contains, in particular, a symbolic expression of an 
equation whose second term is zero.152 The second work is Rashf ar-ru∂åb min 
thugh¥r a>mål al-˙isåb [Sucking the Nectar from the Mouths of the Operations 
of Calculation] by al-Qa†rawån•, a mathematician who lived in Tunis probably 
at the end the fourteenth century or the beginning of the fifteenth. This is the 
only extant mathematical text of the Maghrib in which the calculation of the 
square and cubic roots of an abstract polynomial is explained. The interest of 
this fact does not lie in the results themselves, since the extraction of the square 
root of a polynomial of arbitrary degree had been explained by as-Samaw<al 
(d. 1175) in Baghdad, and since the extraction of the cube root could be car-
ried out by any mathematician who understood the technique.153 The inven-
tors of the method in the Eastern Islamic world used the symbolism of tables 
to support of the algorithm, but al-Qa†rawån• uses the Maghribi letter symbols 
to write out the data, the operations and the results. Al-Qa†rawån•’s book is a 
good illustration of the circulation of ideas and techniques among various sci-
entific centers in the Islamic world.

Arithmetic

Since 1990, the history of arithmetic in al-Andalus and the Maghrib has been 
the subject of intensive research in the Maghrib itself. This has resulted in the 
editions and studies of the following works written between the twelfth and 
fourteenth century: Ibn al-Bannå’s Raf > al-˙ijåb,154 Ibn Qunfudh’s Óa†† an-
niqåb,155 Ibn al-Yåsam•n’s Talq•˙ al-afkår,156 al->Uqbån•’s Shar˙ at-Talkh•ß,157 
and al-Óaßßår’s Kitåb al-bayån wa t-tadhkår.158 In addition, studies have been 
made of the methods of false positions159 and arithmetical algorithms160 in the 
tradition of al-Andalus and the Maghrib. The relationship between arithmetic 
and the science of Islamic inheritances has been studied on the basis of the 
Kitåb al-istiqßå< wa t-tajn•s f• >ilm al-˙isåb [the Book of the Investigation and 
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the Classification in Calculation] of al-Óub¥b• (4th/10th c.),161 al-Mukhtaßar 
[the Abridged <book>] of al-Ó¥f• (d. 1192)162 and Shar˙ Mukhtaßar al-Ó¥f• 
[Comment on al-Ó¥f•’s abridged <book>] of al->Uqbån• (d. 1408).163 Another 
research project has dealt with aspects of arithmetic practiced in al-Andalus 
between the ninth and the eleventh century and their presence in Maghribi 
writings, or in Andalusi works written after the eleventh century that were 
distributed and taught in the Maghrib. These investigations started with the 
study of the arithmetical parts of three important works which had never 
been analyzed before: in chronological order, the first three chapters of Ibn 
al-Yåsam•n’s Talq•˙ al-afkår, chapters I–VII of the first part and the entire 
second part on fractions of Ibn Mun>im’s Fiqh al-˙isåb and, lastly, Book I of 
Ibn al-Bannå’s Raf > al-˙ijåb.164 This increased knowledge of the practice of 
arithmetic in the Maghrib has led to the identification of the first volume of 
the full version of al-Óaßßår’s work, al-Kitåb al-kåmil f• >ilm al-ghubår. Suter 
conjectured the existence of such a work and he distinguished it from the Kitåb 
al-bayån of the same author.165

Since research is still in its initial stage, it does not allow us to describe 
the arithmetic tradition of the Muslim West in detail, but it is already pos-
sible to sketch briefly the major outlines and the characteristic aspects of this 
tradition.

As in the East, the Indian positional decimal system, with modified num-
ber symbols of Indian origin, dominated Andalusi and Maghribi teaching. But 
two other systems of numeration and calculation were used in al-Andalus and 
in the Maghrib. The Óisåb al-yad (Finger Reckoning) does not seem to have 
been marginal since mathematicians of some importance devoted writings 
to it, as they also did in the Eastern Islamic world.166 The second system is 
the R¥m• calculation (see above, p. 321). Evidence in some mathematical texts 
shows that this system was used at least since the twelfth century. Authors of 
Andalusi origin or Andalusi formation, like al-Óaßßår, Ibn Mun>im and Ibn 
al-Yåsam•n, discuss the system at length. In mathematical texts the system is 
presented in the form of a definition with comment, or in the form of an inde-
pendent chapter. Ibn al-Bannå even devoted a whole treatise to it.167

The arithmetical algorithms in the extant works are mostly the same as 
those already used in the East. Presentation and usage change in the course of 
time. In the works prior to the thirteenth century, there are two separate sec-
tions on the operations of doubling and halving respectively, multiplication 
is treated before the addition, and an important place is given to the chapter 
dealing with fractions, which sometimes occupies up to half of the work.168 
From the thirteenth century onward, these characteristics disappear from the 
handbooks. From now on fractions are represented with the bar separating 
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numerator from denominator (as we do nowadays) but no author claims this 
innovation.

The Theory of Numbers

Ibn al-Bannå’s Raf > al-˙ijåb was the first work to show historians that number 
theory was studied in the Maghrib. The work deals with problems of the 
Euclidean tradition, such as the study of prime numbers and perfect numbers, 
and problems from the arithmetical tradition of Nicomachus, on figurate num-
bers, summation of a finite series of integer numbers, and amicable numbers.169 
An original contribution of Ibn al-Bannå is the integration of combinatorial 
theorems into the theory of numbers. He expressed these theorems by means of 
a finite series of figurate numbers in the tradition of Nicomachus, or by means 
of the finite series of powers of integers.

It was the discovery of Ibn Mun>im’s Fiqh al-˙isåb that raised the veil 
on some aspects of the Andalusi tradition. In chapter VIII, Ibn Mun>im estab-
lishes the formula for the sum of a series of integers, such as the sum of the first 
n even, odd, even-even or even-even-odd numbers, and the sum of the first n 
squares and cubes. In this chapter, Ibn Mun>im also uses analysis and synthe-
sis to find results usually demonstrated by induction.170 Chapter IX follows the 
tradition of Andalusi writings of the eleventh to twelfth centuries on various 
summations of rows or columns of the table of the figurate numbers.171 Chap-
ter X is devoted to perfect and amicable numbers. The author gives here the 
calculation of Fermat’s couple of amicable numbers (17296 and 18416), which 
al-Óaßßår also gave in the lost second volume of his Kitåb al-kåmil.172 

The second source of information on the Andalusi tradition in the theory 
of numbers is in the chapter on arithmetic of the Kitåb al-istikmål, which was 
identified at the beginning of the 1980s. It is an abridged version of what was, in 
the Arabic mathematical tradition after the ninth century, the core of the theory 
of numbers, namely Books VII, VIII, and IX of Euclid’s Elements,173 the Arith-
metical Introduction of Nicomachus174 and the Risåla f• l-a>dåd al-muta˙åbba 
[Letter on the Amicable Numbers] of Thåbit Ibn Qurra (d. 901).175

Geometry

What was known before 1980 about the geometrical tradition of the Muslim 
West was limited to the problems of measurement and preliminaries for astron-
omy. The importance of this discipline was confirmed by Íå>id al-Anda-
lus•, the eleventh century historian of sciences who discussed the activities 
and works of Andalusi authors who were specialists in geometry176 and who 
practiced this discipline before or in the eleventh century. Ibn Khald¥n also 
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mentions important geometers who lived in the twelfth to thirteenth centuries.177 
But until the end of the 1970s, no important geometrical work of the Muslim 
West had been identified and studied, except al-Jayyån•’s Kitåb majh¥låt qisiyy 
al-kura.

Some Latin and Hebrew sources are important evidence of one aspect of 
the of Arabic geometrical tradition of al-Andalus, because they are translations 
of Arabic texts or compilations based on Arabic material. The field covered by 
these sources is limited, since they are mainly178 concerned with topics related 
to astronomy or land measurement.179

The publications after 1980 fall into three categories: identification of 
lost works, the transmission of Greek and Arabic geometrical works from East 
to West, and the teaching of geometry.

In 1984, I identified and analyzed an anonymous text containing informa-
tion on the original contributions of the Andalusi mathematician Ibn Sayyid. 
These are an extension of the Greek material on conics, and concern what would 
be called much later the study of curves of degree higher than 2. Ibn Sayyid 
outlined a classification of one category of these plane curves and their use to 
solve geometrical problems of the Greek tradition which would be expressed in 
modern terms by equations of degree equal to or higher than 5.180

The discovery, in 1984, of most of the geometrical chapters of the Kitåb 
al-istikmål of al-Mu<taman, by J. P. Hogendijk, answered the questions of 
Sarton in his Introduction to the History of Science.181 The work throws new 
light on the Andalusi geometrical tradition182 and on the transmission of the 
geometrical writings of the Greek corpus, such as Euclid’s Elements, Apollo-
nius’s Conics,183 or Menelaus’s Spherics184 in Arabic from the Muslim East to 
the West. Al-Mu<taman also used geometrical works of the tenth century such 
as Ibråh•m Ibn Sinån’s treatise on the area of the parabola, and even of the 
eleventh century, such as the works of Ibn al-Haytham on optics and on analy-
sis and synthesis.185 Al-Mu<taman, or his Andalusi predecessors, also made 
original contributions to geometry, such as the theorem of Ceva186 and the con-
struction of two mean proportionals between two given lines.187

However, the manuscripts of the Kitåb al-istikmål are incomplete, and 
they are a preliminary draft by al-Mu<taman of a work in two parts, of which 
the second part was apparently never published. Information on the missing 
sections and on the chapters of the proposed second part of al-Mu<taman’s 
project became available ten years later, thanks to the discovery of two copies 
of a manuscript of the thirteenth century. These manuscripts were written in 
Asia by Ibn Sartåq, a mathematician of the East who had carefully studied the 
published version of al-Mu<taman’s book and who had made a new version 
that was not very different from the original one.188
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Another important problem in the transmission of mathematical texts 
relates to the Arabic manuscript copies of Euclid’s Elements preserved in the 
Escurial and in Rabat respectively. A comparative analysis showed that the 
geometers of al-Andalus and the Maghrib might have had at their disposal the 
second al-Óajjåj version of the Arabic translation of the Elements, which was 
dedicated to the Caliph al-Ma<m¥n.189

In the field of the elementary teaching of geometry on the measurement 
of figures several treatises (raså<il) were published in the 1980s.190 But much 
work remains to be done before we can have an adequate idea of this teaching. 
To begin with, the published texts will have to be compared with those which 
are not yet published, such as the geometrical chapter of Ibn al-Yåsam•n’s 
Talq•˙ al-afkår191 and Ibn >Abd¥n’s Risåla f• t-taks•r.192

Conclusion

The following points that arise from this brief survey, may indicate what 
course to follow in investigating both material that has yet to be disclosed, and 
texts which have been discovered, but not yet analyzed.

First, there is the problem of breaks of continuities in the transmission 
from the East to the West. Then, there are problems relating to the subject 
matter of calculation, geometry, and algebra.

In the science of calculation, the questions are: Why did authors prior to 
the thirteenth century give so much space to fractions in their teaching manu-
als? What made Ibn al-Bannå reduce this space, and why did he not hit upon 
the idea of reducing all fractions to one form? And why did the science of 
calculation become the main element of mathematics (in all its aspects) in the 
Maghrib in the post-Almohad period? The last question involves the position 
of mathematics in society as a whole, and the possible negative influences of 
the environment on scientific activity. But, in the light of what we now know 
on the cultural history of Maghrib, we should also question the role of this 
environment in the protection of contents and scientific level, which one could 
designate as minimal.

In geometry the survey has revealed various Arabic versions of Euclid’s 
Elements, which need to be carefully compared with each other, and Andalusi 
and Maghribi geometrical texts which need to be fitted into the Euclidean tra-
dition.193

In algebra, the most puzzling factor is the silence of Andalusi biobibliog-
raphers concerning the presence of the subject in the curricula of the scientists 
they mention. Moreover, they do not mention which works on algebra were 
transmitted from the East to the West. It is only through the Latin and Hebrew 
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translations made from the twelfth century onward that we know that al-
Khwårizm•’s Mukhtaßar and Ab¥ Kåmil’s Algebra must have been available 
in al-Andalus. More research is needed to find these works, and their traces, in 
Arabic sources in the region.

Finally, it has been shown that, in addition to research on the mathemati-
cal texts themselves, investigations using the biobibliographical writings from 
the Muslim West have proved useful. For they have resulted in several publica-
tions relevant to the history of the Andalusi and Maghribi mathematical tradi-
tions, ranging from writings on the biobibliography of mathematicians in the 
Middle Ages,194 through the mathematical activities in each of the three main 
geographical regions of the Maghrib,195 to the study of the situation in a spe-
cific period in a specific region.196 But these studies, while providing a useful 
starting point, also show how much more research remains to be done.
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Introduction

In the opening paragraph of his al-Kulliyyåt f• al-ˇibb, Ibn Rushd alerts his 
readers that the book shall be controversial: “We shall aspire to those doctrines 
which conform to the truth, even if this conflicts with the views of the people of 
the art.”1 In this chapter we shall be concerned with one controversy which Ibn 
Rushd initiated in his medical textbook, namely a biting critique of al-Kind•’s 
pharmacological computus. In the first part of this chapter we shall very briefly 
sketch out al-Kind•’s theory and, in much greater detail, look at the doctrines 
advocated by Ibn Rushd and the criticisms which he directs at al-Kind•. In the 
second section we shall proceed to the central question of this inquiry: to which 
(if any) historical context (or contexts), does this departure belong? 

The Controversy

I  Al-Kindi

Léon Gauthier published a book-length study of the theory of al-Kind•, includ-
ing the Arabic text (from the one surviving manuscript) of the latter’s F• 
ma>rifat al-adwiya al-murakkaba.2 As the title of his book readily indicates, 
Gauthier approached his subject with the aim of demonstrating that the work 
of al-Kind•, and, to a much lesser extent, the critique of al-Kind• given by Ibn 
Rushd, anticipate advances in European science that are associated with two 
nineteenth-century figures, E. H. Weber and T. G. Fechner. Needless to say, this 
sort of orientation in research is unacceptable in our own day. Al-Kind•’s trea-
tise raises several issues that are of great interest to the historian of medieval 
science, especially the early stages of scientific culture in Islamic civilization, 
and surely warrants an in-depth study of its own. That, however, lies far beyond 
the purview of this chapter.

The pharmacological computus with which we are concerned can be 
summarized in a few sentences.3 Classical pharmacology had classified drugs 
into four degrees—more precisely, it had characterized some as temperate, and 
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classified those that were not so into four degrees. These degrees signify the 
drug’s potency in terms of the four elemental qualities: heat, cold, wetness, 
dryness. Al-Kind•’s contribution lies in the claim that the intensity of drugs 
increases geometrically with the increase in degree, according to the “double 
ratio;” (nisbat al-∂i>f ); thus a drug in the first degree is twice as intense as a 
temperate one, one in the second degree is four times so, one in the third degree 
is eight times so, and, finally, one in the fourth degree is sixteen times so.

This is the distinguishing feature of al-Kind•’s theory, and it is the chief 
target of Ibn Rushd’s criticism. It is the viewpoint associated with al-Kind• in 
the relatively meager medieval literature which carries on their debate.4 This 
summary suffices for our purpose, and we shall not go into any more details. 
Nevertheless, before moving on to Ibn Rushd, we should like to call attention 
to these features of al-Kind•’s treatise:

1. Originality. Al-Kind• is quite assertive concerning the original nature of his 
investigations, saying that they constitute an advance in scientific knowledge.5 
Although earlier authorities spoke about the four degrees as applied to simples, none 
explained how this is to be done with regard to compounds. Yet the determination of 
these degrees for compounds is a more urgent matter than it is for simples. Al-Kind• 
writes, “I see that the attainment of knowledge concerning the strengths of com-
pound medications would [yield] tremendous benefits.” As we shall see, the Andalu-

sians too are quite cognizant of the fact that they are undertaking new research.

2. Nicomachus. Near the beginning of his treatise, al-Kind• describes five dif-
ferent mathematical series; from among these he chooses the geometric series 
noted above, since it takes “natural precedence” over the rest.6 This notion is taken 
directly from the Introduction to Arithmetic of Nicomachus of Gerasa. At the end 
of part one, chapter XVII, Nicomachus lists five species of “the greater”; and, at 
the beginning of the next chapter, he asserts that “the multiple is the species of the 
greater first and most original by nature.”7 However, it seems that this point is stated 
a bit more emphatically in al-Kind•’s version of that treatise, which, we must note, 
displays throughout a very different text than the Greek; it is not just a question of 
variants, but of a substantial reworking of the entire treatise. Al-Kind•’s version is 
preserved, along with notes to his lectures on the book, only in the Hebrew transla-
tion of Qalonymos ben Qalonymos.8 At this particular juncture of the Introduction 
to Arithmetic, there is a long explanatory note by al-Kind•, which discusses the five 
series in cosmological context, furnishing additional evidence of his interest in the 
topic.9 A full account of al-Kind•’s pharmacology, especially his attempt at math-
ematization, would pay close attention to the various manifestations of his interest 
in Pythagoreanism.10

3. Galen. Al-Kind• cites some Galenic texts, and refers to some difference of opin-
ion he has with other scholars concerning their interpretation.11 All in all, how-
ever, the correct interpretation of Galen’s pronouncements seems to have been a 
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relatively minor issue (and even less important to Ibn Rushd, though not entirely 
neglected by him; see below) in this particular debate.

II  Ibn Rushd

Ibn Rushd criticizes al-Kind• and his teachings towards the end of the fifth 
book of al-Kulliyyåt, Kitåb al-Adwiya wa-l-Aghdhiya (The Book of Drugs 
and Foodstuffs), in a chapter (the last in the fifth books) entitled “Al-Qawl f• 
Qawån•n al-Tark•b,” “The Chapter on the Rules [or: Laws] of Composition,” 
that is, of making compound medicines. We shall examine this chapter, follow-
ing Ibn Rushd’s exposition of the principles and laws that govern this branch 
of pharmacology, paying close attention in particular to the critique of al-Kind• 
with which it culminates. As we shall see, though, the chapter was never really 
finished. Several variants, especially at the end, testify to Ibn Rushd’s shifts of 
thought concerning the issues at hand. His mature views are expressed not in 
al-Kulliyyåt, but in a separate monograph devoted to one of the most famous 
compound drugs, the theriac.12 That essay is tightly organized and system-
atically developed. Significantly, Ibn Rushd makes no mention there at all of 
pharmacological calculations. As it seems to me, he came to realize that math-
ematics was not his forte, and he concentrated instead on an analysis in terms 
of natural philosophy. Our concern here, then, is with a relatively youthful 
venture on the part of the great philosopher, an excursion into a subdiscipline 
that he later abandoned. Nonetheless, this episode is instructive concerning 
developments in Andalusian science and as well for the intellectual biography 
of Ibn Rushd.

Ibn Rushd begins the chapter with an explanation of the “necessity” 
(∂ar¥ra) of mixing simples to form compounds—that is to say, why the physi-
cian, despite his preference for simples, may have no choice but to prescribe a 
compound. According to Ibn Rushd, three “things” (ashyå<) force the physician 
to have recourse to compounds: a simple of the required properties (quwå) is 
not available; there is available a simple that possesses the requisite proper-
ties, but not in the right quantities; the simple that is otherwise appropriate has 
an additional, undesired property that must be neutralized. Having established 
these three general classes, Ibn Rushd moves on to a detailed exposition of 
each one, including many examples. In the course of this exposition, he refers 
several times to the qån¥n which is relevant to the case at hand. That term 
refers most often to rules that must be kept in mind when preparing medica-
tions; however, these rules are based upon affirmative statements concerning 
the behavior of natural substances, the human body, or the interaction between 
the two—statements that often take on the appearance of the natural laws. 



Y. Tzvi Langermann 354 Another Andalusian Revolt? 355

Although a satisfactory analysis of the issue is beyond the purview of this chap-
ter, I would suggest that the term qån¥n—speaking of how the term was used, 
not necessarily how it was defined—originally referred to manipulative, proce-
dural rules, i.e. general instructions as to how to act, but evolved to mean natural 
law, i.e. general observations concerning the natural world, which form the basis 
or justification for the procedures accepted by the medical profession.

One reason for compounding drugs would be to reduce a substance hot 
in the third degree to one hot in the second. In order to achieve this purpose we 
have two options; we can either compound it with one cold in the first degree, 
or with one hot in the first degree. Ibn Rushd appears to realize that the second 
option is more problematical.13 We are compounding two substances of iden-
tical qualities, but the heat, rather than intensifying, reaches an equilibrium 
between the degrees of the two simples. Ibn Rushd feels that this calls for an 
explanation:

This law (al-qån¥n), I mean that a drug having less heat will reduce the heat 
of [a drug possessing] more [heat] was confirmed (yußa˙˙i˙uhu) by Galen. 
He took as evidence [the case of] hot and tepid water. When the hot is mixed 
with the tepid, its heat is necessarily reduced.14

Since a hot drug, when mixed with a substance hotter than it, will result 
in a net reduction of the heat, one may suppose that a patient with a hot dis-
ease, say a burning fever, could be treated with a hot drug of a lower degree 
than his illness; theoretically, this should reduce the patient’s fever. Experience 
shows, however, that a hot drug will clearly harm the patient. For example, a 
person suffering from a burning fever who is given honey to drink will suffer 
greatly. In order to justify the law of combination given in the preceding para-
graph, Ibn Rushd first resorts to a computation. Pepper is hotter than nard. (We 
learn elsewhere in the Kulliyyåt that the former is hot in third degree, the latter 
in the second.) This means that it has a greater proportion of heat, “as if you 
were to say (ka-<annaka qulta),” a ratio of heat to cold that is 5:1, whereas the 
corresponding ratio in nard is 2:1. “Thus, necessarily, when we mix a dirham 
of pepper with a dirham of nard, the ratio of cold to hot in the combination is 
greater than its ratio in pepper. If you contemplate this, it is evident.”15 The 
computation would seem to be the simple addition of the parts, yielding a ratio 
of 2:7, which is indeed greater than 1:5. 

It is noteworthy that Ibn Rushd does not help the reader along by explain-
ing anything at all about the mathematical operations employed in pharma-
ceutical computations. Some details relating to his method are broached only 
at the end of the chapter, in the course of the critique of al-Kind•, and in a 
manner that is not wholly satisfactory. In particular, Ibn Rushd does not exploit 



Y. Tzvi Langermann 354 Another Andalusian Revolt? 355

his computational apparatus in order to solve the vexing problem of the way 
simples of identical qualities but different degrees react; he does not develop 
any computus that would show precisely by how much a simple, say, hot in the 
first degree will reduce another hot in the second. As we shall see, Ibn Rushd 
has only the most general idea how to approach the problem—though this does 
not stop him from castigating rival approaches. A Jewish writer, Mordecai ben 
Joshua, also known as Viola de Rhodes (Provence, 14th? century), attempted 
to fill in the gaps in Ibn Rushd’s exposition. In fact, though, the computus that 
he devises owes much to the theory of al-Kind•.16

The simple example of nard and pepper clearly does not in and of itself 
provide a sufficient explanation, and in the following paragraph Ibn Rushd 
elaborates. Although his tone is not defensive, it seems that he is trying to 
anticipate objections to the rules that he has just stated. Thus he begins by 
explaining that the “parts” of hot and cold spoken about above occupy an inter-
mediate state of being; “they do not exist in pure actuality (bi-l-fi>l al-ma˙∂), 
but rather in some sort of intermediate state (bi-∂arb min al-tawassu†) between 
potentiality and actuality.”17 He adds that, with the aid of the concept of “inter-
mediate state,” we can understand how homogeneous bodies can nonetheless 
be analyzed into unequal numbers of parts of hot and cold. Another, unstated 
advantage of this characterization of the “parts” is that it avoids any confusion 
between the quantity of the substances and the analysis of their qualities. In the 
example given above, one dirham of pepper has a total of six parts, a dirham 
of nard has three, and a dirham of the mixture has nine—but all weigh one 
dirham. The division into parts is purely an analytical device for determining 
the relative strengths of qualities. This matter too will be clarified presently.

Because these “parts” may also be viewed as potentialities, they repre-
sent the readiness of the drug to be acted upon by the human body, more spe-
cifically by the body’s innate heat. This fact solves the puzzle alluded to earlier: 
why a simple with a relatively low degree of heat will harm a patient suffer-
ing from fever, i.e., increase his fever, even though it will reduce the heat of a 
hotter simple when the two are mixed together. Even though (to return to the 
example given above) honey has a relatively low degree of heat, it is all the 
same “hot,” and this heat will, under the agency of the innate heat, become 
“fiery substance” (jawhar når•). We may conclude, then, that there is an essen-
tial difference between the way the “parts” react: when mixed with another 
simple, they recombine according to a simple arithmetical procedure (as yet 
unspecified), but when consumed by the human, they are activated (though this 
technical term is not employed here) by the innate heat. 

Ibn Rushd speaks again of a qån¥n in connection with the third cause for 
compounding medicines, i.e., in order to mask one of the qualities inherent in 
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a simple. This case is of particular interest, for two reasons. First, Ibn Rushd 
emphasizes the generality and importance of the qån¥n. “It is as we have said 
a general law (qån¥n jåmi>).”18 Second, he gives credit to the Ban¥ Zuhr for 
clarifying and sharpening a qån¥n that is only implicit in the writings of the 
ancients. “It is found in the compounds of the ancients even though they did 
not refer to it explicitly (bi-l-qawl), nor did they call attention to it. The people 
who [provided] the best information about this are none other than the Ban¥ 
Zuhr. Upon my life, they have many merits (ma˙åsin) in this art.”19 This is one 
of several major accomplishments in the field of medicine that stand to their 
credit. Ibn Rushd may have hoped that his own work, together with that of the 
Ban¥ Zuhr, could produce an alternative to Ibn S•nå’s monumental al-Qån¥n f• 
al-ˇibb. We shall return to this in the second part of our chapter.

The rule describes two synergetic effects:

1. The combination of simples may produce in the resultant compound proper-
ties that were unpredictable on the basis of the constituent ingredients. Ibn Rushd 
observes that this particular rule applies only to secondary and tertiary qualities: 
“On the whole (bi-l-jumlati) this rule applies only (innamå) to secondary and ter-
tiary powers.”20

2. The reaction of the human body to medication cannot be fully predicted on the 
basis of an analysis of the ingredients that make up the compound. Ibn Rushd 
writes: “The actions of drugs upon [human] bodies are only a relative matter (amr 
i∂åf•). In truth, this is not something that is consequent upon the parts of the drug 
itself. It may happen that a drug that is itself less hot will be, relative to the human 

body, hotter than a drug that itself possesses greater heat.”21 

The reaction of the human body to a given drug—be it simple or com-
pound—is a strong variable in pharmacology, and one which can be estab-
lished only post facto, through experience, experiment, and observation. This 
fact was common knowledge, and it underlies, as far as I can tell, the disinter-
est (if not disdain) which some authorities, most notably, Ibn S•nå, display con-
cerning pharmacological theory. It is almost paradoxical that Ibn Rushd, who 
invested more effort than most in the theoretical analysis of the action of medi-
cation should also have so strongly emphasized the essentially unpredictable 
nature of compound medications. His discussion of the issues leads eventually 
to the sweeping conclusion that any given combination of drugs may have an 
effect on the human body that is stronger than we might have predicted on the 
basis of an analysis of the qualities of the individual ingredients.

To return to the application of this rule in the chapter under discussion 
here. According to Ibn Rushd, “this qån¥n is an important (muhimm) qån¥n 
in medicine. Indeed, if a person would only bear it in mind as he ought to, he 
would hardly ever administer a cure with a simple drug. By my life, it is found 
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[implicitly] in the compounds of the ancients. . . .”22 Ibn Rushd is going against 
the grain of a medical tradition, stated by Maimonides among others, that the 
physician should administer a compound only when there is no appropriate 
simple; and we have seen that, in the opening paragraph to the chapter, Ibn 
Rushd appears to confirm this tradition. This apparent inconsistency is one of 
several features which, taken together, indicate that this chapter displays work 
in progress, rather than Ibn Rushd’s mature views on the issue.

The next qån¥n addresses the matter of the quantity of simples that are 
to be used in the preparation of compounds. This qån¥n as well has several 
facets (awjuh). For the most part they are general guidelines, almost self-
evident. Unlike the preceding, they do not foreshadow any laws of nature; nor 
do they involve any mathematization of pharmacology. One rule states that one 
employs a smaller quantity of a strong drug and a larger quantity of a weak 
drug—the exact quantities, of course, depend upon the desired result of the 
final product. Another rule concerns compounds in which one particular ele-
ment is overwhelmingly dominant, the other ingredients being ancillary to it. 
The exact quantities of all of the ingredients will be determined by the ultimate 
strength that the medication should have, or other considerations, such as the 
distance which the drug must traverse through the body in order to reach the 
diseased organ. Ibn Rushd then speaks specifically of laxatives, offering again 
a trivial example: if four drugs are required for a potion, then the physician 
mixes a quarter dosage of each and has the patient drink the combination. He 
then concludes:

These are all the rules and laws (jam•> al-dust¥råt wa-l-qawån•n) which 
are employed with regard to quantity. However, since the most important 
thing for the doctor to know when compounding medicines is the degree of 
the primary, secondary, and tertiary powers, if this is possible, we must say 
something about it. We state: when someone wishes to determine the rank 
(martaba), as far as primary qualities are concerned, of a compound drug, 
the way to do this is to take into consideration the degrees of the primary 
drugs which are in it.23

With that statement, Ibn Rushd takes up the computus. He begins with some 
trivial examples which, however, are important for establishing the rules that 
will be employed in more complex cases: “When you know the simple law 
(al-qån¥n al-bas•†), you will necessarily know the complex law (al-qån¥n al-
murakkab) by means of an investigative procedure (bi-wajh al-naΩar).”24

Finally Ibn Rushd is ready to reveal his most complex computus, that 
which applies to drugs compounded from simples of opposing qualities and 
varying degrees. From the preceding, however, the procedure is quite clear: 
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it is all a matter of simple arithmetic, provided that we deal with comparable 
units of power, not of weight: “I mean by their equivalence, not the equiva-
lence in weight, but rather the equivalence in power.”25 The cold ingredient will 
reduce the hot by the amount of its degree; if it is cold in the first degree, it will 
reduce the hot drug by one degree. Drugs of opposing qualities will reduce 
one another in accordance with the number of degrees assigned to them. This 
is in fact an extension of the second class; it is exactly the same computus by 
which it has already been determined that drugs of opposing qualities but equal 
degrees neutralize each other’s effect.

The computus of degrees can be combined with the notion of specific 
quantitative units, yielding a more complete computus. For example, two units 
of a drug cold in the first degree, when mixed with one unit of a drug hot in 
the third degree, will reduce it by two degrees, not one (the sum of the degree 
computus alone). Since the result will be proportional not only to the differ-
ences in degrees (which are always integers, when speaking of simples) but 
their relative quantities (in terms of specific units of each substance), the final 
computation may lead to fractional degrees. Ibn Rushd illustrates with one 
case in which the final result is “an amount in the middle between the third and 
the second,”26 but he does not go into any further detail. The treatise of Viola 
de Rhodes alluded to above works out these fractions in great detail. Before 
ending his discussion on this matter, Ibn Rushd hints that this very same prin-
ciple explains why a double dosage of a drug can be fatal.27 We may readily 
supply the full explanation: a larger quantity of a drug functions (more pre-
cisely, multiple unit dosages function) as unit dosages of a higher degree. 

The last and most troublesome class of drugs is comprised of those that 
are compounded of simples of identical qualities but varying degrees. Ibn 
Rushd has no complete solution to this problem. He does however, have some 
strong opinions about solutions that others have proposed, Indeed, it is by way 
of this particular issue that Ibn Rushd takes on al-Kind• and his computus. The 
problem, as Ibn Rushd intimates, is simple, if not “self-evident (bayyin bi-naf-
sihi).”28 Since a cold drug will reduce a hot drug by the arithmetical difference 
of their respective degrees—for example, a drug cold in the first will reduce a 
drug hot in the second by one degree, yielding a compound hot in the first—it 
stands to reason that a drug of the same quality, e.g. one hot in the first degree, 
will reduce the same drug (hot in the second) by less; but by how much less? 
Ibn Rushd can as yet provide no answer. He argues for a scheme in which drugs 
of the opposite quality will reduce by the greatest amount, temperate drugs will 
reduce by less, and drugs of identical qualities by even less; he speaks of the 
“proportion” (nisba) by which these types of substance will reduce. One might 
have expected that his earlier remarks on the number of “parts” in certain sub-
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stances, as well as the clear cut method discussed in the previous section would 
have presented some opportunities. But he offers no clear formulae for com-
puting the resultant powers of the drug.29

He does, however, have some definite things to say about computi that 
other physicians have proposed. It is here that Ibn Rushd first mentions al-
Kind• by name, placing the blame for introducing confusion and irrelevancies 
into the field of medical pharmacology squarely upon his shoulders:

The person who first plunged them into this matter is none other than the 
man known as al-Kind•. That is because this man wrote a treatise in which he 
sought to speak about the rules (al-qawån•n) by which the nature of a com-
pound drug may be known. But he went astray (kharaja) in speaking about 
the art of numbers and the art of music, in the matter of someone who looks 
into something only incidentally.30 This man adduced in that book senseless 
and hideous things.31

After this blistering introduction, Ibn Rushd is ready to display some 
specific points of criticism. Let us summarize the arguments which he raises:

1. Al-Kind•’s computus contradicts the reasoning which underlies the system by 
which drugs are graded by degrees. Ibn Rushd does not here say who designed 
this system, preferring instead to refer to the inventors anonymously, in the third 
person; in a later passage, however, at least according to the reading of one of 
the manuscripts, the system is associated with Galen. A drug that causes sensible 
heat—apparently, the most barely sensible heat is intended—is assigned to the first 
degree. Then, drugs “whose distance from that [first degree] is [the same as] that 
[first drug’s] distance from temperance” are classified in the second degree. “With-
out any doubt, it is double the first”—not four times, as in the theory of al-Kind•. 
Similarly, drugs whose distance from the second degree is the same as the distance 
of the second from the first are assigned to the third degree, “and likewise for the 

fourth.”

2. What could ever have forced the medical profession to adopt the “double ratio” 
advocated by al-Kind•? It is not entirely clear whether Ibn Rushd rejects al-Kind•’s 
assertion (drawn as we have seen from Nicomachus) that the “double ratio” is the 
most natural, or whether he is simply unaware of it.

3. According to the system of al-Kind•, third-degree drugs would be already fatal; 
that is, if we follow Ibn Rushd’s interpretation, whereby any drug four times as 
intense as the first degree is fatal. What, then, are we to do with fourth degree 

drugs?

4. The increments between the degrees are unequal. “What greater disorder 
(ikhtilål) could happen to the art?”32 Ibn Rushd elaborates, somewhat unclearly: 
al-Kind• has defeated his own purpose. (Here again Ibn Rushd uses the third 
person, and it is possible, though in my view unlikely, that he means to say that 
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al-Kind• has missed the mark with regard to ‘his’ [Galen’s] purpose.) He wished to 
preserve the [uniform] increase in degrees, but by doing so geometrically, rather 
than arithmetically, he has caused the increments between each degree to increase 
successively. “So if there were a fifth degree, it would be thirty-two ‘parts’. . . This 

is all delusion and drivel, and a discussion of things which have no reality.”33

The last sentence, in which Ibn Rushd reinforces his earlier denunciation 
of al-Kind•, is a fitting finale to his tirade. However, the manuscript tradition 
indicates that Ibn Rushd continued to reflect upon the problem; he was espe-
cially concerned with the proper understanding of one of Galen’s pronounce-
ments. His later thoughts are contained in this paragraph, which is found in one 
of the Arabic manuscripts of al-Kulliyyåt (St. Petersburg 124) and reproduced 
in some of the Hebrew and Latin translations:

The way by which al-Kind• came to err is that he made the first degree double 
the temperate with regard to the quality, hot or cold. This then required him 
to maintain the double ratio. It may be said to him that Galen intended by the 
first degree that which adds one part in ten to the temperate. In this way, if 
the double ratio were to be compounded for [each] increase in the degrees, it 
would not entail that the drug which is in the fourth degree would be sixteen 
times the temperate. That it is arranged (tarattaba) in this way [is indicated 
by] Galen’s saying:34 “By the first degree I mean that which is evident to the 
sense, when first there appears a change in the body.” Had he meant by the 
first degree double the temperate, then the change which is evident in the 
body [upon the application of a substance in the first degree] would not be 
the first change. Contemplate this; it is quite clear. However, when a well-
known person commits an error, people by habit follow him, since the power 
of imitation (quwwat al-taql•d) overwhelms their natures.35

A somewhat abbreviated and slightly different version of this paragraph 
is found in the Hebrew translation of Shlomo ben Avraham: “But what Galen 
said about this, when he stated, ‘I intend by the first degree, that change in the 
body which is first apparent for a drug.’ Had he meant by the first degree double 
the temperate, then the change which is evident in the body upon [the appli-
cation of] the drug would not be the first change. Contemplate this; it is quite 
clear. However, it is customary for people to follow the claims of a famous 
person, since they accept his opinion.”36 Yet a third version of this paragraph is 
found in the Latin translatio antiqua.37

In his later reflections upon the problem, Ibn Rushd has arrived at three 
additional arguments:

(P1) A quasi-mathematical argument, whose meaning is not entirely clear to me, 
which implies a contradiction between a decimal system planned by Galen and al-

Kind•’s geometrical series.
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(P2) A textual argument, based upon a direct quotation from Galen. According to 
Ibn Rushd, since the first degree signifies the minimum sensual excitation, it cannot 

possibly be double the temperate (which does not stimulate the senses at all).

(P3) A third argument for the supposed popularity of al-Kind• (though it could 
equally be directed against Galen), namely people’s ingrained habit of accepting 

without question the pronouncements of “famous people.”

Argument P2 leads us to raise the question of Ibn Rushd’s familiar-
ity with the entire Galenic corpus; and, even more to the point, it forces us 
to wonder, as Gauthier did, whether Ibn Rushd read al-Kind•’s treatise in its 
entirety. For al-Kind• cites two Galenic texts, neither of which is referred 
to by Ibn Rushd: Tark•b al-Adwiya (On Compound Drugs), in ten chapters, 
better known in Arabic as Kitåb al-Mayåmir, and the book on drugs writ-
ten for Andromachus, apparently a reference to the work known in Arabic as 
Kitåb al-Tiryåq ilå B•s¥n or Kitåb al-Tiryåq ilå F•ßun.38 In addition, al-Kind• 
cites these sources as proof that Galen had unambiguously rejected the very 
computus advocated by Ibn Rushd: “Moreover, Galen has already refuted the 
school which maintains that the strength (quwwa) of the fourth degree is four 
times the first, and the third three [times the first]. . .”.39 Ibn Rushd, on the one 
hand, gives no indication that he knows of these passages, nor, in particular, 
that they were cited by al-Kind•—and it seems almost inconceivable that he 
could simply ignore them, if he wishes to make a convincing critique. Yet, on 
the other hand, he quotes a different Galenic dictum (not cited by al-Kind•, at 
least not in this context) whose misinterpretation, so he claims, is the source 
of al-Kind•’s error.

Argument P3 is interesting for other reasons. As we have already sug-
gested—and we shall return to this point in the second part of this chapter—
al-Kind•’s treatise seems to have generated very little interest. How, then, are 
we to understand Ibn Rushd’s complaint concerning the uncritical acceptance 
which al-Kind•’s theory enjoys? It may very well be the case that, despite the 
lack of written evidence, al-Kind•’s theory—or, at least, the basic idea that 
with each higher degree, the intensity of the drug doubles—did have wide cur-
rency. Alternatively, the appeal to habit as a source of error may have become a 
cliché; at the very least, Ibn Rushd’s contemporary, Moses Maimonides, offers 
the very same explanation for persisting errors in both a medical and a philo-
sophical context.40

Ibn Rushd has now completed his critique of al-Kind•. The two final 
paragraphs of the chapter do help to fill us in on the context of the critique, 
and we shall look at them briefly. Ibn Rushd briefly discusses the concept of 
khåßßa (“specific”).41 This leads him to note a point of disagreement with Ibn 
S•nå. According to the latter, most of the active properties of the theriac are 
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khawåßß, specifics whose cause cannot be determined (la yumkin ta>l•luhu). 
For that reason, Ibn S•nå did not want to make any changes at all in the tradi-
tional recipe of Andromachus. “As for me,” continues Ibn Rushd, “I see it fit 
to add many drugs to the theriac.”42 These are substances which may or may 
have not been known to the ancients, such as aloe (>¥d), ambergis (>anbar), 
and cloves (qaranful). Ibn S•nå holds the view that the properties of the theriac 
are occult, and, therefore, the physician should not tamper with the formula of 
the ancients, whose efficacy has been proven empirically over the centuries. 
By contrast, Ibn Rushd, though not denying a role for empiricism, feels that 
the properties of the theriac, or some of them at least, are explicable in terms 
of the predictable reactions of the constituent simples; therefore, there is no 
reason why a physician ought not to experiment with different formulations. 
Ibn Rushd thus closes the chapter with a strong, personal statement of confi-
dence in rational pharmacology and in the advance of science. 

The next few lines are meant to introduce the discussion of some specific 
compounds and their properties. This is in line with the plan of this section of 
al-Kulliyyåt (Kitåb al-Adwiya wa-l-Aghdhiya), which is outlined in the open-
ing paragraph. There Ibn Rushd writes: “Afterwards we shall move on to the 
rules for the composition [of drugs; qawån•n al-tark•b]. We shall mention the 
best known compound drugs, and we shall make known their natures, in accor-
dance with what the rules necessitate in that matter.43 When that is completed, 
the purpose of this section will have been achieved.”44 The list itself is not 
found in the edition of the Arabic text, nor in any of the Hebrew manuscripts 
which I have examined.  

The very last sentence of this chapter is relevant, in a strange way, to the 
critique of al-Kind•. Justifying the particular organization which he has chosen 
for his materials, Ibn Rushd writes, “Just like the authority on music (ßå˙ib al-
m¥s•qå) will speak of the well-known instruments only after he has presented 
the elements of melodies and the ways in which they are combined, in order that 
training should take place in that way (li-yaqa>a bi-dhålika al-irtiyå∂), so also 
is the case here.”45 Ibn Rushd could not have forgotten that, only a few pages 
earlier, he had criticized al-Kind• for appealing to music in order to justify a 
decision made in pharmacological theory. Music, however, is not at all a major 
factor in al-Kind•’s treatise, and Ibn Rushd’s citation of that particular point—
while ignoring many other highly relevant arguments adduced by al-Kind•—
seems to be purely polemical. Why Ibn Rushd should then have chosen to make 
a similar analogy in his own treatise is truly puzzling.
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The Contexts

Ibn Rushd’s participation in the controversy surrounding models employed by 
the astronomers of his day has been quite adequately contextualized.46 There is, 
first of all, evidence of dissatisfaction with the Ptolemaic models on the part of 
a number of prominent thinkers, from all parts of the Islamic world: Thåbit ibn 
Qurra and Ibn al-Haytham in the east, and Ibn Båjja and Ibn ˇufayl in the west. 
The westerners, so it seems, reexamined celestial physics as part of a wide-rang-
ing reappraisal of Aristotelian natural philosophy. Within this Andalusian trend, 
Ibn Rushd stands out for his resolute commitment to Aristotle—not to Aristo-
telianism, by which I mean the body of doctrines, including various accretions 
and commentaries, not all of them mutually compatible, built up around Aris-
totle’s teachings, but rather to a purified, strict reading of Aristotle’s own writ-
ings. Thus, within the framework of the astronomical controversy, Ibn Rushd’s 
attitude differs from that of Ibn Båjja, whose dynamics, intended or not, contain 
a radical reworking of Aristotle, and from that of al-Bi†r¥j•, who, it has been 
shown, preferred a number of teachings, especially the theory of impetus and 
the identification of tashawwuq (“desire,” “yearning”) as the driving force of the 
cosmos, which he may have discovered in the writings of the maverick thinker 
Abu’l-Barakåt.47 In short, Ibn Rushd’s interest in the problem situates itself into 
both the wider Islamic and the narrower Maghribian-Andalusian contexts; in 
addition, there is a distinct twist to his views, which can only be explained by 
taking into account his own personal inclinations and interests.

What about medicine? To be sure, Galen’s writings evoked widespread 
criticism throughout the Islamic cultural orbit. Ab¥ Bakr al-Råz• wrote a 
book length refutation of Galen.48 Ibn S•nå’s al-Qån¥n is replete with critical 
remarks, including the standard accusation that, in attempting to philosophize, 
Galen intruded into a field in which he did not belong.49 Moses Maimonides, a 
native of Cordova and Ibn Rushd’s contemporary, devoted the twenty-fifth sec-
tion of his Fuß¥l M¥så to a stinging attack on Galen’s teachings in both medi-
cine and philosophy.50 Ibn Rushd as well offers numerous strictures on Galenic 
doctrines.51 His critical posture, therefore, conforms to a general trend among 
Arabic medical writers.

This point, however, is only of limited value in approaching our particu-
lar problem. Ibn Rushd’s critique is directed at al-Kind•, not Galen. To be sure, 
there is evidence that the proper interpretation of some Galenic texts was one 
factor in the dispute between Ibn Rushd and al-Kind•. Moreover, it is note-
worthy that Abu’l->Alå< ibn Zuhr, patriarch of the Ban¥ Zuhr family of physi-
cians, defended Galen against the strictures of al-Råz•.52 As we have seen, Ibn 
Rushd’s work in medicine, particularly in pharmacology, is deeply indebted to 
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that of the Ban¥ Zuhr. If Ibn Rushd’s attitude towards Aristotle can be charac-
terized as unswerving admiration, his attitude towards Galen was more ambiv-
alent; his attack upon al-Kind•’s fits neither into the critique of Galen nor into 
his defense.

Two general observations are in order at this juncture, built upon remarks 
of Ibn Rushd concerning scientific activity going on in his day. First, an impor-
tant distinction between the work undertaken in pharmacology and in astron-
omy must be drawn. Research into pharmacology is part of a comprehensive 
reinvestigation into the science, one whose aim is to attain new information. By 
contrast, the program in astronomy was undertaken in order to recover the true 
astronomy of Aristotle; but pharmacology has no supreme authority, nor any 
lost knowledge of the ancients. True, the ancients had by experience arrived at 
some effective medical prescriptions, but even then, they did not elaborate the 
underlying theory. This important task was assumed only by later generations; 
and it is only one of several areas in pharmacology where the moderns can 
make new and important contributions. Second, however, there exists a signifi-
cant similarity between the works in pharmacology and astronomy. Credit for 
advancing the new research programs belongs to the Andalusians, in particular, 
the medical clan of the Ban¥ Zuhr.

Let us return to the specific issue of the critique of al-Kind•. As far as I 
can tell from the extant sources, at the time that Ibn Rushd launched his attack, 
al-Kind•’s monograph seems to have engendered hardly any interest at all. 
Indeed, one searches in vain for references to al-Kind•’s computus in the two 
most important medical encyclopedias, Ibn S•nå’s al-Qan¥n and al-Maj¥s•’s al-
Kåmil. Al-Kind• is cited about a dozen times in the Qån¥n, invariably in con-
nection with this or that particular remedy, but his computus is not mentioned. 
Indeed, Ibn S•nå does seem to have held much stock in pharmacological com-
putations at all. In the introductory “scientific tract” (al-maqåla al->ilmiyya) to 
book five of the Qån¥n, Ibn S•nå surveys the various reasons why it may be 
necessary to employ compound medications: to combine or intensify various 
secondary qualities, to delay the digestion of the medication until it reaches its 
destination, and so forth. Within this list we find a simple computus, not that of 
al-Kind•, described as follows:

Perhaps we may need a drug which heats four parts (ajzå<), but we can only find 
one which heats three parts, and another which heats five parts. We then com-
bine them, in the hope that the result of the combination will heat four parts.53

Of the various reasons which Ibn S•nå gives for compounding medicines, it is 
only in connection with this computation that he adds the disclaimer, “in the 
hope that” (råj•n an) the desired result will be obtained. Al-Maj¥s• also limits 
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himself to a single trivial example. If the physician requires a drug hot in the 
second degree, but no such simple is available, he may compound two other 
simples, one hot in the third degree and the other hot in the first. The resulting 
compound will be hot in the second degree.54

Even among the Andalusians, who, as we shall see, were especially 
interested in pharmacology, the impact of al-Kind•’s book seems to have been 
minimal. In the sources available to me, I have found only one clear trace. Ibn 
Buklårish (fl. Saragossa, eleventh century), author of al-Musta>•n•, exhibits a 
computus which is surely based upon al-Kind•, though the latter is not named.55 
Significantly, the only tract which directly addresses the theory of al-Kind• was 
written by the same Abu’l->Alå< ibn Zuhr. Unfortunately, his Treatise in the 
Explication of the Letter of Ya>q¥b bin Is˙åq al-Kind• on Compounding Drugs 
(Maqåla f• bas†ihi li-risålati Ya>q¥b ibn Is˙åq al-Kind• f• Tark•b al-Adwiya) is 
not extant.56

Why was there so little interest in al-Kind•’s book? For all practical pur-
poses, recipes for compound drugs were passed on by tradition. Medical prac-
titioners surely experimented with different formulas. Ibn Rushd, as we have 
seen, is especially confident of his ability to improve existing formulae by the 
application of rational laws. On the whole, though, Ibn S•nå’s approach (criti-
cized by Ibn Rushd) was the norm. Traditional recipes were passed on from 
generation to generation; even when practitioners experimented with old or 
entirely new formulae, their work was not guided by mathematical rules, such 
as those worked out in the treatise of al-Kind•. Pharmacological theory was 
of little practical use, both before and after Ibn Rushd. This accounts both for 
the weak interest in al-Kind•’s treatise in the period preceding Ibn Rushd, as 
well as the relatively low level of interest in the controversy, once Ibn Rushd 
published his critique.57 Ibn Rushd’s work in pharmacology built upon earlier 
advances of the Ban¥ Zuhr and, presumably, he was familiar with the exposi-
tion of al-Kind•’s theory by Abu’l->Alå. However, this very limited tradition is 
only a small part of our story.

For a fuller appreciation of the historical context of this episode, it must 
be considered against the background of two larger developments. The first 
of these is the conspicuous concern which Andalusian and Maghribi scien-
tists evinced in pharmacology; one ought to include as well related disciplines 
such as botany and botanical lexicography. This special interest has often been 
connected with the gift of a beautiful copy of Dioscorides’ Materia Medica 
by the Byzantine emperor Constantine VII to the Umayyad caliph >Abd al-
Ra˙mån III. This event, which took place in 948/9, certainly had an immediate 
impact. An impressive group of Andalusian savants set about to study the text, 
and the Byzantine emperor was persuaded to send a monk in order to assist 
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the Andalusians in understanding the Greek text. Three centuries later Ibn al-
Bay†år still found cause to write a commentary on Kitåb Diyåsq¥r•d¥s. All in 
all, the corpus of pharmacological writings produced in Spain and Morocco is 
impressive indeed.58 

It seems especially noteworthy that, among the Andalusians who dis-
played a keen interest in medical pharmacology, we find two savants who 
also figure prominently in the reexamination of astronomy: Ibn Båjja and Ibn 
ˇufayl. The former wrote (in addition to some notes to part of De plantiis) a 
Discourse on Galen’s Book of Simples and, in collaboration with Abu’l-Óasan 
Sufyån, a book recording experiences with the drugs described by Ibn Wåfid.59 
Moreover, none other than al-shaykh al-akbar—the noted mystic Mu˙y• al-
D•n ibn >Arab•—informs us about a debate or contest or sorts between Ibn 
Båjja and Ibn Zuhr regarding medicinal plants.60

As for Ibn ˇufayl: Ibn Rushd records correspondence which he had with 
Ibn ˇufayl concerning the proper definitions of the terms “food” (ghidhå<) and 
“drug” (dawå<), and especially the distinction between the two. Their disagree-
ment seems to have hinged upon the interpretation of a statement made by 
Galen.61 As we have already stressed several times, Ibn Rushd’s most impor-
tant collaboration was that carried out with the Ban¥ Zuhr. In an earlier study, 
we took note of the lack of communication between some of the major play-
ers in the Andalusian revolt against Ptolemaic astronomy.62 Although scholars 
can discern a community of interest between Ibn Båjja, Ibn ˇufayl, Ibn Rushd, 
and al-Bi†r¥j•, there is very little evidence of any joint effort or even discussion 
between these indivduals. By contrast, there is abundant evidence of lively and 
fecund exchanges in pharmacology. This may indicate that, of the two sciences, 
astronomy and pharmacology, it was the latter which aroused more intense 
interest on the part of the Andalusians. 

The second context, and the one which promises to be of greater signifi-
cance for the history of thought in Islamic culture, is the attempt—perhaps one 
ought to call it a program—of the Andalusians to construct an alternative to 
the syntheses which were produced in the East. The most important target of 
this enterprise, in connection with both medicine and philosophy, was the work 
of Ibn S•nå. Abu’l->Alå< ibn Zuhr’s negative opinion of Ibn S•nå’s al-Qån¥n 
has been recorded by a number of authors: “Previously, he [Ibn Zuhr] had not 
encountered this book [al-Qån¥n], but when he examined it he condemned it 
and discarded it, and did not include it in his private library. He kept tearing off 
the margins of its leaves which he used for writing prescriptions for his own 
patients.”63 

In the final paragraph of al-Kulliyyåt, which as the title implies, deals 
with generalities, Ibn Rushd notes that his book must be supplemented by 
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another treatise of the type known as kanån•sh (singular: kunnåsh), containing 
instructions for the treatment of specific diseases. He hopes to have the oppor-
tunity to compose a work of this sort himself. In the meantime, however, he 
warmly recommends “the work known as al-Tays•r, which was written in our 
own time by Ab¥ Marwån ibn Zuhr. It was I who requested of him [to write] 
this book. I made a copy, and this was the cause of its publication (khur¥j).”64 
In connection with this passage, A.Z. Iskandar has observed: “The Kulliyyåt of 
ibn Rushd and the Tays•r of ibn Zuhr were meant to serve as a complete work 
on medicine, possibly to serve instead of K. al-Qån¥n which did not appeal to 
Abu’l->Alå< Zuhr b. >Abd al-Malik b. Marwån b. Zuhr and, very likely, his son 
and disciple Ibn Zuhr, also the latter’s pupil, ibn Rushd.”65 Whether the com-
bined efforts of Ibn Zuhr and Ibn Rushd were undertaken in response to the 
work of Ibn S•nå, al-Maj¥s•, or al-Råz•, it does seem to be the case that they 
were striving to produce an alternative to the great compilations emanating 
from the eastern reaches of Islam. Ibn Rushd’s critique of al-Kind• may be 
viewed as one small contribution to this program. 

The point which we would like to stress is that the purpose of this venture 
was not tahåfut, the “destruction” of noxious ideas, but rather the construc-
tion of an alternative. Moreover, the effort to compose a comprehensive work 
on medicine was part of a far-reaching program to create alternatives in other 
fields of science and philosophy. Earlier writers, especially Ibn Båjja, had pre-
pared the groundwork. Ibn Båjja was certainly an insightful and penetrating 
thinker, but he does not seem to have been interested in or capable of produc-
ing a systematic work. Two relatively short works of Ibn ˇufayl are generically 
identical—they even bear the same title—as some treatises of Ibn S•nå: Óayy 
ibn YaqΩån and al-Urj¥za f• al-ˇibb.66 These may, then, be viewed as Andalu-
sian alternatives to Avicennian writings. The central tasks of this enterprise 
were taken up by Ibn Rushd. We have already noted his collaboration with Ab¥ 
Marwån Ibn Zuhr in the field of medicine. Perhaps his series of commentar-
ies to Aristotle were intended to serve as the Andalusian response to Ibn S•nå’s 
al-Shifå>. In philosophy, however, Ibn Rushd, had no collaborators; he did it all 
himself.67

This leads us to our final observation. Although the broad program of 
pharmacological research as well as many of the specific statements made by 
Ibn Rushd do find their place in the contexts which we have suggested above, 
they do not exhaust the story. Ibn Rushd’s personality certainly stands out in 
his bold confidence in the power of rational inquiry. This, however, is just one 
aspect of the strong sense of dissatisfaction with the work of his colleagues—
or most of them I should say, excluding in particular the Ban¥ Zuhr—which 
informs and infects Ibn Rushd’s medical writings. Even after all of the contexts 
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have been listed and described, one must take into account Ibn Rushd’ strong 
individuality, his personality, and his idiosyncrasies, if one wishes to obtain a 
satisfactory understanding of the work of this great thinker.
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al-Fåråb• (d. 950), 56–66, 68–69, 88, 
 129, 135, 138–140, 144, 159-160
al-Farghån•, 34
al-Fåris•, Kamål al-D•n (d. ca. 1318), 
 59, 67, 103
Far Maghrib, 318, 321
al-Fås•, A., 319, 321
Ferrarius, Matheus, 35
Fez drawing, 255–256
Figure indice (Indian symbols), 29
Figure toletane (“Toledan symbols”), 29
Fihrist (al-Nad•m), 4, 7
F• kayf•yat ßan>at jam• al-as†urlåbåt 
 (al-Sijz•), 8
Finger reckoning (˙isåb al->aqd), 4–5, 
 330
Fiqh al-˙isåb (the Science of Calculation) 
 (Ibn Mun>im), 324, 330–331
F• ma>rifat al-adwiya al-murakkaba 
 (al-Kind•), 351
First equation (ta>d•l awwal), 294
5 (numeral), 12–13, 15
Form of objects, 93–94, 96–99, 109
Fractions, 330–331
Fundamenta tabularum, 40
Fuß¥l M¥så (Maimonides), 363
Galen (d. ca. 214), 60, 87–88, 97, 104–
 106, 111, 113, 123, 126, 135, 178, 
 352–353, 360–361, 363
Galenic theory of four degrees of 
 intensity or potency, 132
GanŸgåråma of Kå∞m•ra, 269
Geminus of Rhodes, 23
Geometrical demonstrations, 60
Geometry. See also Mathematics, Arabic
 half-rhombus, 257
 Hellenistic
 methods of, 182–188
 problems from, 178–182
 heptagon, 182, 186, 188
 paraboloid, 182, 252–253, 332
 rhombus, 206–207
 Transversal Theorem and, 190
Gerard of Cremona, 42
Germinus of Rhodes, 23
al-Ghåd•, Abu’l-Hasan, 181
al-Ghazål•, school of, 159
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Ghubår numerals, 7–10
Ghunya (Quß>a), 286–287
Ghunyat al-†ålib f• taqw•m al-kawåkib 
 (Quß>a), 286
Givens (Euclid), 185
Gnostic tradition, 132–134
Gravity
 centers of, 182
 of semicircle, 192
Great Book of Music (Nicomachus of 
 Gerasa), 128
Great Mosque at Baghdad, 236
Great Mosques at Baßra, 236
Greek Almagest, 24–26
Greek mathematics, 136–137
Greek science. See Philosophical 
 tradition in Greek science
Gur-i Amir dome, 247

Óabash, 189
Óab†aq method, 287
Óab†aq tables, 299–301
Half-rhombus, 257
Óall al->aqd wa-bayån al-raßd (Ibn Ab• 
 l-rijål al-Qayrawån•), 285
Harley manuscript, 38–39, 41
Harmonice Mundi libri V (Kepler), 122
Harmony, 133–134
Óarrån, philosopher-scientists from, 
 126–127
Óasan b. Mu˙ammad (known as Qå∂• 
 Óasan al-Makk•), 286
al-Óåsib (in Bukhara), 181
al-Óåsib, Óabash, 316
al-Óaßßår, 313, 319, 323, 329–330
Óa†† an-niqåb >an wuj¥h å>mal al-˙isåb 
 (the Lowering of the Veil on the 
 Various Operations of Calculations) 
 (Ibn Qunfudh al-Qasan†•n•), 329
Óayy ibn YaqΩån (Ibn S•nå), 367
Height determination, 63
Hellenism, 126–127, 129, 132, 135, 145, 
 159, 190, 193
Hellenistic geometry
 methods of, 182–188
 problems from, 178–182
Heptagon, 182, 186, 188

Hermann of Carinthia, 40, 42
Herod, hall of, 236
Hindu reckoning system (al-˙isåb 
 al-hind•), 3, 8–12, 15
Hindu-Arabic numbers, eastern forms 
 of, 29, 38–42. 
Óisåb al->aqd (finger reckoning), 4–5, 
 330
Óisåb al-hind method
Óisåb r¥m• (Byzantine calculation), 321
Homocentric spheres, 152, 156
al-Óub¥b• (10th c.), 329–330
Hugo of Santalla, 40, 42
Óur¥f az-zimåm (figures of the account 
 book), 321
al-Ó¥f• (d. 1192), 330
al-Huwår• (7th/13th c.), 319
Hyginus, 40
Hyperbolic qubbas, 251

Iamblichus (4th century disciple of 
 Porphyry), 123, 125, 128
Ibn >Abd¥n (d. after 976), 327–328, 
 333
Ibn Ab• >Al• al-Qusan†•n•, Abu’l-Óasan 
 >Al•, 285
Ibn Ab• Jaråda, 65
Ibn Ab• Manß¥r, Yahyå, 49
Ibn Ab• l-Rijål al-Qayrawån•, 285
Ibn Afla˙, Jåbir, 23
Ibn A˙mad, al-Khal•l (d. 797), 325
Ibn >Arab•, Mu˙y• al-D•n, 366
Ibn >Azz¥z al-Qusan†•n•, Abu ’l-Qåsim 
 (d. 1354), 18, 285
Ibn Badr (13th c.), 315, 319–320, 322, 
 326–328
Ibn Båjja (d. 1138), 148, 151, 158, 316, 
 363, 366–367
Ibn al-Bannå (d. 1321), 285–286, 313, 
 315, 317–319, 323–326, 328–331
Ibn al-Bay†år, 288, 366
Ibn Bishr, Sahl, 38
Ibn Ezra, Abraham (1089/92-after 1160), 
 36–40, 42
Ibn al-Fat˙, Sinån (10th century), 62, 71, 
 111, 327
Ibn al-Hå<im (fl. 1205), 285
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Ibn Óamza (16th c.), 318
Ibn al-Óanbal• (d. 1564), 242
Ibn al-Haytham, 59, 63, 65, 67, 85, 88–
 110, 140, 142–150, 157, 177, 180, 
 182, 186, 190–191, 252–253, 316, 
 332, 363. See also Optics (Ibn al-
 Haytham)
Ibn Óayyån, Jåbir, 132–133
Ibn Óunayn, Is˙åq, 24
Ibn >Iråq, Ab¥ Naßr (4th/10th c.), 177, 317
Ibn >°så, A˙mad, 58, 60–61, 65, 67, 70, 
 77, 88
Ibn Is˙åq, 287
Ibn Is˙åq, Óunayn (d. 264/877), 59, 63
Ibn Is˙åq al Tam•m• al-Tunis•, Abu’l-
 >Abbås (fl. Tunis and Marrakesh ca. 
 1193–1222), 285
Ibn al-Kammåd (fl. Cordova 1116–17), 
 285, 288
Ibn Khald¥n, 251, 311–315, 322–324, 
 327, 331–332
Ibn Labbån, K¥shyår (2nd half of 10th 
 century), 3–4
Ibn al-Layth, Abu’l-J¥d, 178, 180–181
Ibn L¥qå, Qus†å (d. 300/912), 59–61, 65, 
 70, 140
Ibn al-Majd•, Shihåb al-D•n (d. 1447), 10
Ibn Mu>ådh al-Jayyån• (d. 460/1067), 
 315–317
Ibn Mu˙ammad al-Ma˙all• al-Shåf•, 
 Óusayn (d. 1756), 15
Ibn Mun>im, 315, 324–325, 330–331
Ibn al-Nad•m, 4, 127
Ibn al-Qif†• (d. 646/1248), 9, 315
Ibn Qunfudh al-Qasan†•n•, 329
Ibn Qurra, Thåbit, 24, 110, 127, 180, 
 182, 239, 241, 251–253, 331, 363
Ibn al-Raqqåm, Mu˙ammad (d.1315), 
 285
Ibn Rushd (d. 595/1198), 121, 149, 151, 
 157–158, 316, 351–362
Ibn Sahl, Ab¥ Sa>d al->Alå<, 77, 89, 177–
 178, 181–182, 186, 188–192
Ibn as-Sam˙, 315
Ibn al-Sar•, Abu’l-Fut¥˙ (d. 548/1153), 
 148
Ibn al-Shå†ir (d. 1375), 286
Ibn S•nå, 65, 113, 135, 140–142, 159, 

 160, 356, 361–364, 366–367
Ibn Sinån, Ibråh•m (d. 946), 110, 177, 
 182–183, 188, 192, 332
Ibn Sir†åq, Mu˙ammad, 177
Ibn Tam•m, Ab¥ Sahl Dunas, 8–9, 12
Ibn Thabåt, 127, 180, 182, 239, 241, 
 251–253, 331, 363
Ibn Tibbon, Moses, 313
Ibn ˇufayl (d. 1185), 151, 316, 363, 
 366–367
Ibn ˇ¥l¥n mosque (Cairo), 240
Ibn >Umar al-Í¥f• >Abd-al-Ra˙mån 
 (d. 986), 36, 38
Ibn Wåfid, 366
Ibn Ya˙yå al-Í¥l• (d. 986), 4–5
Ibn al-Yåsam•n (d. 1204), 8–10, 12, 46, 
 318, 320–321, 326–327, 329–330, 333
Ibn Y¥nus, Kamal al-D•n, 180
Ibn Y¥nus (d. 1009), 287
Ibn Zakariyyå al-Gharnåt• (d. 809/
 1406), 315
Ibn al-Zarqålluh (d. 1100), 285, 310
Ibn Zuhr, Abu’l->Alå<, 363, 365–367
al-°j•, >A∂ud-al-D•n (d. 1355), 159
Ikhtißår al-jabr wa l-muqåbala (the 
 Summary of Restoration and 
 Balancing) (Ibn Badr), 327–328
Ikhwån al-Íafå, 132–134, 141
I>låm f• manåqib al-Islåm, 134
Image-oriented theory of vision, 96–105
Indian astronomical handbooks, 3
Indirect (ghayr al-mustaq•ma) rays, 
 66–67
Induction (istiqrå<), 144–145
Intellectual development in North Africa 
 and Muslim Spain
 contexts, 363–368
 controversy
 Ibn Rushd, 353–362
 al-Kind•, 351–353
 overview, 351
Introduction to Arithmetic (Nichomachus 
 of Gerasa), 125, 128, 352
Introduction to the Phenomena 
 (Geminus of Rhodes), 23
Is˙åq, Ab¥, 151
Isidor, 11
istiqrå<, 144
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Iudicia (Pseudo-Ptolemy), 39

al-Jadhår•, 286
al-Jå˙iΩ (d. 255/868-869), 4, 58
Jåmi> al-mabådi< wa l-ghåyat f• >ilm 
 al-m•qåt (the Collection of the 
 Principles and the Goals in the Science 
 of the Determination of Time) 
 (al-Murrakush•), 310
al-Jayyån•, see Ibn Mu>ådh
Jerusalem, 236
John of Seville, 34

Karbåßo or Karbåsa (before 1749–1750),
 287
Kab•sa, 288
Kalåm school, 138, 159
Kalpa, 270, 272
al-Kamil (al-Maj¥s•), 364
al-Karaj•, Ab¥ Bakr Mu˙ammad 
 (d. 1023), 235, 242–243, 249, 322, 
 327–329
Karna (hypotenuse), 283
Kashf al-asrår >an >ilm ˙ur¥f al-ghubår
 (Disclosure of the Secrets of the 
 Science of the Dust-Numerals) 
 (al-Qalaßåd•), 9, 313
Kashf al-˙aqå<iq f• ˙isåb al-daraj wa-l-
 daqå<iq (Ibn al-Majd•), 10
al-Kåsh•, Ghiyåth al-D•n Jamsh•d ibn
 Mas>¥d, 239–241, 243–244, 246–248, 
 253, 256–261
Kendra (anomaly), 283
Kepler, Johannes, 90, 95–97, 103, 122
Kevalaråma, 283
Key of Arithmetic (al-Kåsh•), 239, 247
al-Khayyåm•, >Umar, 177, 188, 192
al-Khåzin•, Ab¥ Ja>far, 182, 190
al-Khayyåm (d. 1131), 327
al-Khwårizim•, Mu˙ammad ibn A˙mad 
 (ca. 980), 4
al-Khwårizim•, Mu˙ammad ibn M¥så 
 (ca. 830), 3, 7, 9–11, 13, 16, 238, 
 287, 316, 321–322, 327–328, 334
al-Kind•, Ab¥ Y¥suf Ya>q¥b ibn Is˙åq 
 (d. ca. 257/870), 59–60, 62, 65, 88, 
 126–132, 134–135, 141, 351–353, 
 358–362, 364–365, 367

Kitåb al-adwår f• tasy•r al-anwår 
 (al-Baqqår), 286
Kitåb al-ba†h, 132
Kitåb al-bayån wa t-tadhkår (Book of 
 the Demonstration and the 
 Recollection) (al-Óaßßår), 313, 329
Kitåb al-burhån (al-Fåråb•), 139–140, 
 159
Kitåb Diåsq¥r•d¥s (Ibn al-Bay†år), 
 366
Kitåb al-˙isåb al-hind• bi-l-takht (“Book 
 on Reckoning with the Board”), 7
Kitåb ikhbår al->ulamå< bi-akhbår al-
 ˙ukamå (The Book which Informs the 
 Scholars on the Life of the Wise) (Ibn 
 al-Qif†•), 315
Kitåb al-ikhtißår f• l-jabr (Ibn al-Bannå), 
 326
Kitåb Ikhwån al-ßafå, 132
Kitåb al-istikmål, 331–332
Kitåb al-istiqßå< wa t-tajn•s f• >ilm al-
 ˙isåb (the Book of the Investigation 
 and the Classification in Calculation) 
 (al-Óub¥b•), 329–330 
Kitåb al-kåmil, 328, 331, 334
Kitåb majh¥låt qisiyy al-kura (The Book
  of the Unknown Sphere), 315, 317, 
 332
Kitåb al-mayåmir, 361
Kitåb al-mu>allim•n (al-JåhiΩ), 4
Kitåb †abaqåt al-umam (Book of the 
 Categories of Nations) (al-Andalus•), 
 315, 323
Kitåb †ab•>at al->adad (Book on the 
 Nature of Numbers), 323
Kitåb al-tarb•> wa’l-tadw•r (Book of 
 Rectangularity and Circularity) 
 (al-Jåhiz), 58
Kitåb al-Tiryåq ilå B•s¥n, 361
Kitåb al-Tiryåq ilå Fißun, 361
Kitåb al-uß¥l wa l-muqaddamåt f• l-jabr 
 wa l-muqåbala (the Book of the Bases 
 and of the Preliminaries in Restoration 
 and Balancing) (Ibn al-Bannå), 326, 
 328–329
Kufa, 236
al-K¥h•, Ab¥ Sahl Wayjan ibn Rustam, 
 177–193, 252–253
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al-Kulliyyåt f• ’l-ˇibb (Ibn Rushd), 351, 
 354, 360, 362, 366–367

Latin translations of Almagest, 25
Latitudes of planets, 30–31
Leonardo of Pisa, 16
Leonardo da Vinci, 96
Liber Embadorum (Bår Óiyya), 327–328
Liber Mahamalet, 327, 328
Liber Mamonis, 23–36, 39, 42
Liber Mensurationum (Ab¥ Bakr), 327– 
 328
Liber trium iudicum, 40
Libros del Saber (M. Rico y Sinobas), 
 310
Light
 accidental, 93
 essential, 93
 least, 94
 physics of, 90–95
 primary, 93
 properties of, 92–93
 secondary, 93
Locating Hidden Waters (al-Karaj•), 239
Longitudes of planets, sun, and moon, 
 288–290
Lucca (1142–1145), 38
Lunar anomaly, 289, 297
Lunar apogee, 272
Lunar epicycle, 276–279, 283
Lunar equations, 294–298, 299–301
Lunar longitude, 288–290
Lunar motion values, 289–293
Lunar tables
 Óab†aq tables and, 299–301
 lunar equations and, 294–298
 lunar motion values and, 289–293
 mean motion values and, 289–293
 solar equations and, 294–298
Lunar variation, 297

Macrobius, theories of, 35
Mafåti˙ al->ul¥m, 4
Maghrib, intellectual circles of, 10, 310, 
 314, 317, 320–321, 323, 326, 331
Maghribi manuscripts, 11–12, 15
al-Maghrib•, Mu˙y• al-D•n (d.1283), 286
Magic squares, 199–233

Mahåråja Jayasim˙a 27, 269
Maimonides, Moses, 151, 158, 160, 357, 
 361, 363
al-Majr•†•, 10, 310, 316
al-Maj¥s•, 35, 364–365, 367
al-Makk•, Qå∂• Óasan (fl. 17th c.), 286
al-Ma<m¥n (ruled 813–833 A.D.), 34–
 35, 127, 238, 333
ManåΩir (optics) tradition, 56–57, 62. 
 See also Opticß Arabic
al-ManåΩir wa’l-maråyå al-mu˙riqa 
 (Ibn >°så), 65
Maqålåt al-arba> (The Four Epistles) 
 (Ibn al-Bannå), 319
Maqål•d >ilm al-hay<a (The Keys of 
 Astronomy) (al-B•r¥n•), 317
al-Maqqar•, 314
Maråyå (catoptrics) tradition, 56–57, 63
al-Mårid•n•, Mu˙ammad Sib† (d. 1527), 
 10
Markaz (double elongation), 289–290, 
 299
al-Mas>¥d•, 4
Materia Medica (Dioscorides), 365
Mathematics, Arabic. 
 Andalusi mathematicians and, 316
 axiomatic, 136–137
 as demonstrative science, 142–148
 5 (numeral), 12–13, 15
 gnostic tradition and, 132–134
Mathematics, Arabic (cont.)
 al-K¥h• and, 177–193
 in nineteenth century, 311–315
 in ninth through sixteenth centuries
 contents of research on, 318–320
 eighteenth-century research on, 309–
  310
 nineteenth-century research on, 310–
  315
 orientation of research on (after 1980), 
  323–324
 results of research on, 323–324
 topics studied in research on, 324–334
 twentieth-century research (before 
  1980) on, 315–316
 optics and, Arabic, 150
 philosophy and, in medieval Islam
 Andalusian reaction and, 148–157
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 Aristotle and, 135–142
 Ibn al-Haytham and, 142–148
 overview, 121–122
 philosophical tradition, 122–135
 primacy of doctrine and, 148–157
 theology and, 157–160
 quadrivium of, 130, 133
 role of, Ibn al-Haytham’s view of, 149
 7 (numeral), 15
 6 (numeral), 13, 15
 in tenth century
 methods of Hellenistic geometry and, 
  182–188
 overview, 177–178, 192–193
 problems from Hellenistic geometry 
  and, 178–182
 3 (numeral), 5, 7, 15
 2 (numeral), 5, 7, 15
 vision and, 91
Mausoleums, 247–248
Maya the Asura, 272
Mean motion values, 289–293
Measurement of a Circle (Archimedes), 
 191–192
Megale Syntasis (Ptolemy), 30
Megali Xintaxis, 24
Menelaus, 42, 332
Meno, 127, 135–136
Metaphysica, 154
Metaphysics (Aristotle), 137, 152, 154–
 156
Metaphysics or First Philosophy, 121–
 122
Metaphysics (Ibn Sina), 141
Metaphysics and philosophy, 154
Meteorologica (Aristotle), 149
Michael (bishop of Tarazona), 40
Minhåj a†-†ålib f• ta>d•l al-kawåkib 
 (The Guide of the Student for the 
 Correction of the Star Movements) 
 (Ibn al-Bannå), 285–286, 317
Mir<åtiyya (Related to Mirrors), 63
Miså˙a (surveying) tradition, 56–57, 63
al-Miså˙åt al-manåΩiriyya, 62
Miskawayh, Ab¥ >Al• (d. 1030), 134
Module of the muqarnas, 257
Moon. See also Lunar tables
 apogee of, 272

 epicycle of, 276–279, 283
 equations of, 294–298
 longitude of, 288–290
 motion values of, 289–293
 variation of, 297
Mordecai ben Joshua, 355
Mosque design, 236–237
Mu˙ammad (the Prophet), 235–236
Mukhtaßar, (al-Khwårizm•) 330, 334
Mukhtaßar f• l-jabr (Concise Work on 
 Algebra) (Ibn Badr), 320, 322
Muqaddima (Ibn Khald¥n), 311–313, 
 315, 322–324, 327
Muqarnas (stalactite vaults), 237, 240, 
 254–261
al-Muqni> f• l-˙isåb al-hind• (al-Nasaw•), 
 7
M¥r•s†us, 76
al-Murråkush•, 310
Muslim Occident, 310, 314, 322–323, 
 331, 334
al-Mu<taman, 315, 332
Mu†ayyan muqarnas, 258–259
Mu>tazilite discussions, 95

Naf˙ a†-†•b (Diffusion of the Perfume) 
 (al-Maqqar•), 314
al-Nasaw•, 7, 25
Natural philosophy (al->ilm al-†ab•>•), 121
“Nature of Sight,” 90
Neoplatonism, 123–125, 127–129
Neopythagoreanism, 124, 127
Neopythagoreans, 12
Newton, Sir Isaac, 94, 193
Nicomachus of Gerasa (first century 
 C.E.), 123, 125, 128, 130, 132–133, 
 162, 190, 323, 331, 352
Nine Chapters on Arithmetical 
 Techniques (Chinese work), 235
Nine numerals (al-˙ur¥f al-tis>a), 4, 7, 
 10, 15
Nityånanda, 269–283
Numbers, theory of, 331. See also 
 Mathematics, Arabic; specific numbers
Numbers of Fez, 321

Objects, determining size and distance 
 of, 62–64
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Odd squares, 199
Oddly-even squares, 199
Ogival arch, 240–241
On Centers of Gravity (Archimedes), 
 181
On Centers of Tangent Circles (al-K¥h•), 
 187
On Clarification of Finding Distances 
 between an Observe and the Centers of
 Mountain Heights (Risåla f• °∂å˙ 
 wijdån ab>åd må bayn al-nåΩir wa 
 maråkiz a>midat al-jibål), 62
On the Common Mathematical Science
 (Iamblichus), 128
On the Configuration of the World 
 (f• Hay’at al->ålam) (Ibn al-Haytham), 
 143
On the Light of the Moon (f• Îaw< al-
 qamar) (Ibn al-Haytham), 143–144
On Measuring Paraboloids (Thåbit), 251
On the Sphere and Cylinder 
 (Archimedes), 252
1000s, 29
Opposite point, 283
Opticks (Newton), 94
“Optics According to the Method of 
 Ptolemy,” 90
Optics, Arabic. See also Vision
 accuracy of vision, 57–59
 applications of, versatility and fallibility 
 of, 62–64
 Arabic astronomy and, 87
 elements of vision, 64–66
 historical perspective, 55–57
 justification of, 59–61
 mathematics and, 150
 mechanisms of vision, 64–66
 mediums of operation, 66–69
 modes of operation, 66–69
 paradox of, 85–90
Optics, Arabic (cont.)
 scientific character of, 140
 sources of, primary, 70–71
 variety of demonstrations, 59–61
 veracity of vision, 57–59
Optics (Euclid), 58, 62–63, 65, 87–88, 
 90

Optics (Kitåb al-ManΩir) 
 (Ibn al-Haytham)
 Alhazen’s problem and, 89
 crisis of the science of vision and, 
 91–92
 depth perception and, 104–109
 elements of, 109–110
 fundamental concept of, 109
 image-oriented theory of vision and, 
 96–103
 paradox of Arabic optics and, 85–90
 as phenomenalist theory, 93
 physics of light and, 90–95
 Ptolemy and, 85–86, 109
 reflection and, 91, 94–95
 refraction and, 91, 94–95, 101–103
Optics (Ptolemy), 67–68, 88, 90
Ordered form, 96

Påkßa argument, 277, 283
Papyrus PERF 789, 5, 12
Parabolic qubbas, 251–252
Paraboloid, 182, 252–253, 332
Parvum Almagestum, 23
Pecham, John, 95
Perception
 depth, 104–109
 of distance, 106–109
 visual, 96–103
Peripatetic tradition, 96, 127, 132
Persepolis, 236
Pharmacological computus, 351–352
Philosophical demonstrations, 60
Philosophical tradition in Greek science
 background information, 122–123
 gnostic tradition and, 132–134
 al-Kind• and, 127–132
 Platonic heritage, 124–125
 school of al-Kind• and, 134–135
 transmission of, through science, 126–
 127
Philosophy and mathematics in medieval 
 Islam
 Andalusian reaction and, 148–157
 Aristotle and, 135–142
 Ibn al-Haytham and, 142–148
 metaphysics and, 154
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 overview, 121–122
 philosophical tradition, 122–135
 philosophy as demonstrative science 
 and, 135–142
 primacy of doctrine and, 148–157
 spherical astronomy and, 145–146
 theology and, 157–160
Physics
 Aristotelian, 159
 of light, 90–95
Pisan Tables, 36–42
Placita philosophorum (Aetius), 63
Plane mirror, reflection from, 63
Planetary Hypotheses (Ptolemy), 31, 
 160
Planets
 angular velocity of, 155
 distances of, 155
 latitudes of, 30–31
 longitudes of, 272–273
 motion of, 30–31, 149
 order of, 152
 revolutions of, 146
 rotations of, 270–271
 speed of, 155
Planisphaerium (Ptolemy), 10
Planispheric astrolabes, 189
Planudes, Maximus, 8
Plato, 91, 112, 122, 125, 127, 129, 132–
 133, 135–136, 138, 146, 151, 157
Platonism, 123–125, 127–132, 146
Plotinus, 125, 127–128
Point-forms of light and color, 94, 96–
 97
Pointed arches, 246–247
Polynomials, 326–327
Porphyry, 125
Posterior Analytics (Aristotle), 60–61, 
 124, 130–131, 135, 138–141, 144, 
 151, 159
Prior Analytics, 144
Probe experiment, 99–100
Problemata Physica (Aristotle), 57–58, 
 72, 140
Proclus, 122-123, 125, 128, 144, 146
Properties of light, 92–93
Proportion (nisba), 358–359

Psephophoria kat’Indous (Planudes), 8
Pseudo-Aristotle, 140
Pseudo-Boethius, 12
Pseudo-Euclid, 63, 65
Pseudo-Ptolemy, 39
Ptolemaic astronomy, 191, 316
Ptolemy (d. ca. 170), 10, 23–24, 28, 30–
 31, 34, 42, 67–68, 85–91, 105–106, 
 108–112, 123, 135, 146–148, 151–
 152, 156, 160, 191, 274, 276
Pythagoras, 124
Pythagoreanism, 124–125, 128, 130, 
 133, 142, 352

al-Qalaßåd• (d. 1486), 9, 15, 312–
 313, 319, 321, 323–324
al-Qål•, Ab¥ >Abd Allåh Mu˙ammad, 
 287
Qalonymos ben Qalonymos, 352
Qån¥n, 353–357
al-Qån¥n f• ’l-ˇibb (Ibn S•nå), 356, 363–
 364, 366
Qån¥n al-Mas>¥d• (al-B•r¥ni), 160
Qarawiyy¥n educational institutions, 
 314
al-Qa†rawån•, 329
Qawåm al-D•n ibn Zayn al-D•n. See  
 al-Sh•råzi, Zayn al-D•n
Qazw•n, 236
Qubbas (cupolas or domes), 237, 239, 
 248–253
al-Q¥h•, Ab¥ Sahl, see al-K¥h•
al-Qurash•, Abu’l-Qåsim, 18, 327
Quß>a, 286–287
al-Qushj•, 160

Radiation, 61
Raf > al-˙ijåb (the Raising of the Veil) 
 (Ibn al-Bannå), 324, 326, 328–331
Raså<il Ikhwån al-Íafå, 133–134
Rashf ar-ru∂åb min thugh¥r a>mål 
 al-˙isåb (Sucking the Nectar from the 
 Mouths of the Operations of 
 Calculation) (al-Qa†rawån•), 329
Ratio, 184–185, 187
al-Råz•, Fakr-al-D•n, 159, 367
Reasoning, process of, 60–61
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Recension of Euclid’s Elements (al-ˇ¥s•), 
 314
Rectilinear propagation, 94–95
Rectilinear vision, 91
Reflection (in>ikås), optical, 63, 67–68, 
 91, 94–95
Refraction (in>i†åf), optical, 68, 91, 94–
 95, 101–103
Regalis dispositio, 35–36, 39
Reversed (mun>akisa) rays, 63–64, 66
Rhetorica ad Herennium (Milan), 35, 39
Rhomboid, 257
Rhombus, 206–207, 257
Risåla f• l-a>dåd al-muta˙åbba (Letter on 
 the Amicable Numbers), 331
Risåla f• ’l-taks•r (Book on 
 Measurement) (Ibn >Abd¥n), 327, 333
Risåla f• dhawåt al-asmå< wa l-munfaßilåt 
 (Epistle on the Binomials and the 
 Apotomes) (al-Qalaßåd•), 321
Robert of Ketton, 40, 42
Romakasiddhånta (Roman Z•j), 270–272, 
 282
Roof of a cell, 257
Round arches, 240
Rudimenta (al-Farghån•), 34
Rudolph of Bruges, 40, 42
R¥m• calculation, 330

al-Íåb•, 185
Íåbi<a, 126–127
Íabian sources, 127
Íafavid Iran architects, 260–261
al-Íaghån•, A˙mad, 177, 180–181, 189–
 190
al-Sajgåw• (d. after 1592), 15
al-Samaw<al (d. 1175), 188, 327, 329
Íamßam al-Dawla 177
Sanjaq Dår al-T¥nis•, 286–287
Sarvasiddhåntaråja (Nityånanda), 269–
 283
Science of aspects (>ilm al-manå<Ωir), 
 56, 69
Science of the balance (>ilm al-m•zån), 
 132
Science discrimination, 59–60
Science of harmony (ßinå>at al-ta<l•f), 
 134

Science of number (>ilm al->adad), 134
Science of optics (>ilm al-manåΩir), 56–
 57. See also Optics, Arabic
Science of rays (>ilm al-shu>å >åt), 60–
 61
Sciences of Number (Ibn Khald¥n), 311–
 312
S∑bøkht, Severus, 3, 126
Second equation (ta>d•l thån•), 295–296
Sefer ha-Mispar (Ibn Ezra), 39
Sefer Yeßira (Ibn Tam•m), 8
Sensible explanation/illustration, 60
Sergius of Resh>ayna, 126
7 (numeral), 15
Shåh Jahån, 269, 271
al-Shann•, 178
Sharaf al-Dawla 177, 181, 192
Shar˙ Mukhtaßar al-Ó¥f• (Comment on 
 al-Ó¥f•’s abridged book), 330
Shar˙ at-Talkh•s (al->Uqbån•), 329
al-Shar•f, Mu˙ammad, 286
Shaykh >Abduh, 317
al-Shifå< (Ibn S•nå), 142, 367
Sh•råz• muqarnas, 259–260
al-Sh•råz•, Qu†b al-D•n (d. 711/1311), 
 67, 89, 110–111
al-Sh•råz•, Zayn al-D•n, 259–260
Shlomo ben Avraham, 360
Shu>å> (Persian work), 67
Shuk¥k >alå Ba†lamy¥s (Ibn al-Haytham), 
 143, 157
Siddhåntakaustubha, 283
Siddhåntasindhu, 269–271
Íidq•, Muß†få, 177
Íifr (zero), 4, 20
al-Sijz•, A˙mad (fl. 970), 5, 8, 177, 180–
 181, 183, 189, 251
Simple muqarnas, 258
Simplicius, 163
6 (numeral), 13, 15
Socrates, 136
Solar apogee, 30, 272
Solar equations, 294–298
Solar longitude, 288
Solar markaz, 290
Solution of the Aporias in Euclid’s 
 Elements (Ibn al-Haytham), 144
Spandrels, 246
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Sphere and Cylinder (al-K¥h•), 189
Spherics (Menelaus), 332
Spherical astronomy, 145–146
Spiral motion, 156
Squares, 57–58, 199. See also Bordered 
 squares
Stephen (at Benedictine monastery of 
 St. Paul), 35
Stephen the Philosopher, 35–36, 42
Sufficient Arithmetic (al-Karaj•), 235, 
 238–239, 249
al-Í¥f•, >Abd al-Ra˙mån, 23, 36, 39, 49, 
 51 
Summa of Ash>arite Kalåm, 159
Sun
 apogee of, 30, 272
 equations of, 294–298
 longitude of, 288
S¥ryasiddhånta, 270–272, 282
Synaugeia, doctrine of, 91
Syntaxis (Ptolemy), 30–31
Syrianus, 125

al-ˇabar•, Badr al-D•n (ca. 824/1421), 63
Tables of Pisa, 36–42
ˇabaqåt al-umam (al-Andalus•), 9
ˇab•>iyyåt, 154
Tabulae astronomicae (de La Hire), 283
Tadhkira, 159
Tahdh•b al-akhlåq (Ab¥ >Al• Miskawayh), 
 134
Ta˙r•r al-ManåΩir (Recension of Euclid’s 
 Optics) (al-T¥s•), 67–68
Takht, 7–8
Tåj al-azyåj (al-Maghrib•), 286
Takht-i Suleiman vault in Iran, 254, 256, 
 260
Talkh•ß a>mål al-˙isåb (The Abridged 
 [book] of the Operations of 
 Calculation) (Ibn al-Bannå), 313, 315, 
 319, 324, 328
Talq•˙ al-afkår (The Fecundation of 
 Spirits) (Ibn al-Yåsam•n), 326, 329–
 330, 333
Talq•˙ al-afkår f• >amal rasm al-ghubår 
 (Ibn al-Yåsam•n), 9
Tanb•h al-albåb >alå maså<il al-˙isåb 
 (Warning to Intelligent People on the 

 Problems of Calculation) (Ibn 
 al-Bannå), 324–326
Tamerlane, mausoleum of, 247
Taqw•m al-kha†a< wa’l-mushkilåt allat• 
 li-Uql•dis f• Kitåbihi al-maws¥m 
 bi-l-ManåΩir (Rectification of 
 Euclid’s Optics) (al-Kind•), 59, 65, 
  88
Tår•kh al-˙ukamå (Ibn al-Qif†•), 9
Tark•b al-adwiya (On Compound Drugs) 
 (Ibn Rushd), 361
Tashkent scroll, 256
al-tays•r, 367
10s and 10000s, 26–27
Ten Treatises on the Eye (Ibn Is˙åq), 63
Theodosius, 42
Theology and science, 157–160
Theon of Alexandria, 88
Theorem of Ceva, 332
Thierry of Chartres, 40
3 (numeral), 5, 7, 15
Tier, 257
Timaeus (Plato), 132–133
Timothy, Patriach, 162
Timurid architecture, 246–247, 256, 259
Timurid scrolls, 255
Toledan tables, 316
Toledo (Spain), 29
Toletane figure, 11
Topkapı scroll, 250–251, 253–254, 256
Transmission of philosophy through 
 science, 126–127. See also Cross-
 cultural transmission
Transversal Theorem, 190
Treatise of Astronomy (Lalande), 314
Treatise on Geometrical Problem Solving
  (al-Sijz•), 183
Treatise on the Magic Disposition of 
 Numbers in Squares (Abu’l <Wafå), 
 200
Treatise on Measuring Paraboloids (Ibn 
 al-Haytham), 252–253
Treatise on the Ratio Between Three 
 Lines (al-K¥h•), 181
Trepidation, 285–286
Tu˙fåt al-a>dåd (The Ornament of 
 Numbers) (Zak•), 318
al-T¥nis•, Sanjaq Dår, 286–287
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al-T¥s•, Naß•r al-D•n (d. 672/1274), 59, 
 63, 67–68, 89, 110–111, 159–160, 314
2 (numeral), 5, 7, 15

Ulugh Beg, 239, 247, 269–270, 282–283, 
 286–290, 294, 298–299
Umayyad rule, architecture under, 240
al-Uqayl•, 321
al->Uqbån• (d.1408), 329–330
al-Uql•dis•, 3, 8
al->Ur∂•, Mu<ayyad al-D•n, 112
Urj¥za f• l-judh¥r (Poem on the Roots) 
 (Ibn al-Yåsam•n), 321, 326–327
al-Urj¥za f• ’l-ˇibb (Ibn S•nå), 367
al-Urj¥za al-Yåsam•niyya (the Poem of 
 al-Yåsam•n) (Ibn al-Yåsam•n), 320

Vaults (architectural), 237, 239–247.  
 See also Muqarnas
Visible image (khayål), 102–103
Vision. See also Optics, Arabic
 accuracy of, 57–59
 color and, 91, 93
 conditions of, 92
 crisis of science of, 91–92
 elements of, 64–66
 image-oriented theory of, 96–105
 mathematical treatment of, 91
 mechanisms of, 64–66
 probe experiment and, 99–100
 problem of, 95
 properties of, 92
 rectilinear, 91
 reflected, 91
 refracted, 91
 true, 91
 untrue, 91
 veracity of, 57–59
Visual cone, 96, 98, 103
Visual rays, 91
Visual-ray hypothesis, 65
Von Humboldt, Alexander, 3

Wafq al-a>dåd, 199. See also Quadratus 
 mirabilis 
al-Wahhåb, A˙mad ibn >Abd, 58
al-Wahhåb, Óasan Óusn•, 287

Western Arabic numerals, 7, 11–15, 29
Witelo, 95

al-Ya>q¥b•, 4
Yavanacandracchedyakopayogin•, 283

az-Zahråw•, 315
Zak•, Íåli˙, 318
al-Zarqålluh, 51, 151, 310, 316
Zayt¥na educational institutions, 314
Zero (ßifr), 4, 15
Z•j, 192, 269–270, 282, 285–286, 298
Z•j (al-Battån•), 10
al-Z•j al-Jad•d (Ibn al-Shå†ir), 286
al-Z•j al-Mukhtaßar f• >ilm al-ta>d•l wa 
 l-taqw•m. See Z•j al-Shar•f
al-Z•j al-Muwåfiq (Ibn >Azz¥z al-
 Qusan†•n•), 285
Z•j al-mumta˙an, 34
Z•j al-Shar•f (Sanjaq Dår), 286, 288, 
 290–291, 294, 299
Z•j-i-jad•d (Ul¥gh Beg), 269
Z•j-i-Shåh-Jåhån•, 269, 271
Z•j-i Sul†ån• (Ul¥gh Beg), 286, 289–290, 
 292–294
Zuhr, Ban¥, 356, 363–365
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